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PREFACE

The present volume is the outgrowth of the requirements

for students in engineering and science in Cornell University,

for whom a somewhat brief but adequate introduction to the

Calculus is prescribed.

The guiding principle in the selection and presentation of

the topics in the following pages has been the ever increasing

pressure on the present-day curriculum, especially in applied

science, to limit the study of mathematics to a minimum of

time and to the topics that are deemed of most immediate use

to the professional course for which it is preparatory.

To what extent it is wise and justifiable to yield to this

pressure it is not our purpose to discuss. But the constantly

accumulating details in every pure and applied science makes

this attitude a very natural one towards mathematics, as well

as towards several other subjects which are subsidiary to the

main object of the given course.

This desire to curtail mathematical training is strikingly

evidenced by the numerous recent books treating of Calculus

for engineers, for chemists, or for various other professional

students. Such books have no doubt served a useful purpose

in various ways. But we are of the opinion that, in spite of

the unquestioned advantages of learning a new method by

means of its application to a specific field, a student would

ordinarily acquire too vague and inaccurate a command of the

fundamental ideas of the Calculus by this one-sided presenta-

tion. While a suitable illustration may clear up the difficulties

3
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of an abstract theory, too constant a dwelling among applica-

tions alone, especially from one point of view, is quite as likely

to prevent the learner from grasping the real significance of

a vital principle.

In recognition of the demand just referred to, we have made

special effort to present the Calculus in as simple and direct

a form as possible consistent with accuracy and thoroughness.

Among the different features of our treatment, we may single

out the following for notice.

The derivative is presented rigorously as a limit. This does

not seem to be a difficult idea for the student to grasp, espe-

cially when introduced by its geometrical interpretation as

the slope of the line tangent to the graph of the given func-

tion. For the student has already become familiar with this

notion in Analytic Geometry, and will easily see that the

analytic method is virtually equivalent to a particular case of

the process of differentiation employed in the Calculus.

In order to stimulate the student's interest, easy applications

of the Differential Calculus to maxima and minima, tangents

and normals, inflexions, asymptotes, and curve tracing have

been introduced as soon as the formal processes of differentia-

tion have been developed. These are followed by a discussion

of functions of two or more independent variables, before the

more difficult subject of infinite series is introduced.

In the chapter on expansion, no previous knowledge of series

is assumed, but conditions for convergence are discussed, and

the criteria for determining the interval of convergence of those

series that are usually met with in practice are derived.

A chapter on the evaluation of indeterminate forms and

three chapters on geometric applications furnish ample illus-
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tration of the uses of infinite series in a wide range of

problems.

By reason of its significance in applications, it does not seem

advisable to omit the important principle of rates. Arising

out of the familiar notion of velocity, it affords an early glimpse

into applications of the Calculus to Mechanics and Physics.

We do not propose to make the Calculus a treatise on Mechanics,

as seems to be the tendency with some writers; but a final

chapter on applications to such topics of Mechanics as are easy

to comprehend at this stage is thought advisable and sufficient.

Especially in treating of center of gravity, the formulas have

been derived in detail, first for n particles, and then, by a limit-

ing process, for a continuous mass. This was considered the

more desirable, as textbooks in applied mathematics frequently

lack in rigor in discussing the transition from discrete particles

to a continuous mass. Besides, the derivation of these formu-

las affords a very good application of the idea of the definite

integral as the limit of a sum. This idea has been freely and

consistently used in the derivation of all applied formulas in

the Integral Calculus. However, as the formula for the length

of arc in polar coordinates is especially difficult of derivation

by this method, we have deduced it from the corresponding

formula for rectangular coordinates by a transformation of the

variable of integration.

In-order to make the number of new ideas as few as possible,

the notions of infinitesimals and orders of infinitesimals have

been postponed to the last article on Duhamel's principle. This

principle seems to flow naturally and easily from the need of

completing the proof of the formulas for center of gravity.

The teacher may omit this article, but its presence should at
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least serve the important end of calling the attention of the

student to the fact that there is something yet to be done in

order to make the derivations complete.

Some teachers will undoubtedly prefer to do a minimum

amount of work in formal integration and use integral tables in

the chapters on the applications. For such the first chapter of

the Integral Calculus might suffice for drill in pure integration.

The problems in this chapter are numerous, and, for the most

part, quite easy, and should furnish the student a ready insight

into the essential principles of integration.

The characteristic features of the books on the Calculus

previously published in this series have been retained. The

extensive use of these books by others, and a searching yearly

test in our own classroom experience convince us that any far-

reaching change could not be undertaken without endangering

the merits of the book. The changes that have been made are

either in the nature of a slight rearrangement, or of the addi-

tion of new illustrative material, particularly in the applications.

We wish to acknowledge our indebtedness to our colleagues,

who have added many helpful suggestions ; to Professor I. P.

Church, of the College of Civil Engineering, for a number of

very useful problems in applications of integration (See Exs.

14-18, pp. 318-320, and Exs. 6-7, pp. 323-324), and particu-

larly to Professor James McMahon, who has carefully read all

the manuscript, assisted throughout in the proof reading, and

made many improvements in the text.
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^XKc

CHAPTER I

FUNDAMENTAL PRINCIPLES

1. Elementary definitions. A constant number is one that

retains the same value throughout an investigation in which it

occurs. A variable number is one that changes from one value to

another during an investigation. If the variation of a number

can be assigned at will, the variable is called independent; if

the value of one number is determined when that of another is

known, the former is called a dependent variable. The depend-

ent variable is called also a function of the independent variable.

E.g., 3 x2
, 4vx — 1, cos x, are all functions of x.

Functions of one variable x will be denoted by the symbols

/(#), <f>(x), • ••, which are read as "/of x" "
<f>

of x" etc. ; simi-

larly, functions of two variables, x, y, will be denoted by such

expressions as

f(?,y),F(x,y), ••••

When a variable approaches a constant in such a way that

the difference between the variable and the constant may be-

come and remain smaller than any fixed number, previously

assigned, the constant is called the limit of the variable.

15



16 DIFFERENTIAL CALCULUS

2. Illustration : Slope of a tangent to a curve. To obtain the

slope of the tangent to a curve at a point P upon it, first take

the slope of the line joining P = (xly yx) to another point (x2, y2)

upon the curve, then determine the limiting value of the slope

m

as the second point approaches to coincidence with the first,

always remaining on the curve.

Ex. 1. Determine the slope of the tangent to the curve

2-FM + fc
at the point (2, 4) upon it.

Here, x\ = 2, y\ = 4. Let x2 = 2 + h,

yi = 4 + k, where h, k are so related that the

point (x2 , y*) lies on the curve.

Thus 4 + k = (2 + h)\

or h = 4 A + A 2
- (1)

The slope m = y*
-

x2 --Xi
becomes

4+ Tc

2 + h

-4
_ 2

k
Fig. 1

which from (1) may be written in the form

k = 4 + h. (2)

The ratio k : h measures the slope of the line joining (xh yx) to

(ar2 , ys) • When the second point approaches the first as a limiting

position, the first member of equation (2) assumes the indeterminate

form -, but the second member approaches the definite limit 4. When

the two points approach coincidence, a definite slope 4 is obtained,

which is that of the tangent to the curve y = x2 at the point (2, 4).

It may happen that h, k appear in both members of the equation

which defines the slope, as in the next example.
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Fig. 2

Ex. 2. If x2 + y
1 — «2

?
find the slope of the tangent at the point

Oi> yd-

Since

Xl* + i/!
2 = a2

,
(asi + ny+ (t/1 + ky = a\

hence 2 hx1 + A2 + 2 /fr/i + fc
2 = 0,

from which - = — -——

—

h 2 ?/i + k

kTo obtain the limit of -, put h, k
h

each equal to zevo in tlie second member.

lim * = _*!.
h±o h ?/i

This step is more fully justified in the next article.

This result agrees with that obtained by elementary geome-

try. The slope of the radius to the circle a2 + y
2= a2 through

the point (x
lf yx) is — , and the slope of the tangent is the nega-

tive reciprocal of that of the radius to the point of tangency,

since the two lines are perpendicular.

3. Fundamental theorems concerning limits. The following

theorems are useful in the processes of the Calculus.

Theorem 1. If a variable a approaches zero as a limit, then

lea will also approach zero, k being any finite constant.

That is, if a = 0,

then Jca = 0.

For, let c be any assigned number. By hypothesis, a can be-

come less than -, hence ka can become less than c, the arbi-
k '

* For convenience, the symbol = will be used to indicate that a variable

approaches a constant as a limit; thus the symbolic form x = a is to be read

" the variable x approaches the constant a as a limit."

el. calc— 2
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trary, assigned number, hence ka approaches zero as a limit.

(Definition of a limit.)

Theorem 2. Given any finite number n of variables

a, (3, y, •••, each of which approaches zero as a limit, then their

sum will approach zero as a limit. For the sum of the n

variables does not at any stage numerically exceed n times the

largest of them, which by Theorem 1 approaches zero.

Theorem 3. If each of two variables approaches zero as a

limit, their product will approach zero as a limit. More gen-

erally, if one variable approaches zero as a limit, then its

product with any other variable having a finite limit will have

the limit zero, by Theorem 1.

Theorem 4. If the sum of a finite number of variables is

variable, then the limit of their sum is equal to the sum of

their limits ; i.e.,

lim (x + y + • • •) = lim x + lim y +
For, if x = a, y = b, • • •,

then x = a + a, y = b -\- (3, •-•,

wherein a = 0, fi
= 0, •• •

;
(Def. of limit)

hence x + y+ ••• = (o+ &+ •••)+ («+ fi+ •••)>

but a + p+->- =0, (Th. 2)

hence, from the definition of a limit,

lim (x + y + •••) = a-\-b-\- ••• = lim x -f- lim y + •••.

Theorem 5. If the product of a finite number of variables

is .variable, then the limit of their product is equal to the

product of their limits.

For, let x = a + a, y = b+($,

wherein a = 0, (3 = 0,

so that lim x = a, lim y = b.
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Form the product

xy = (a + a)(b + fi)
= ab + «6 -f /3a + «0.

Then lim sc?/= lim (ab + ab + (5a + a(5)

= ab + lim ab + lim 0a + lim a/3 (Th. 2)

= ab. (Th. 1)

Hence lim xy = lim a; • lim y.

In the case of a product of three variables x, y, z, we have

lim xyz = lim xy • lim z (Th. 5)

= lim x lim y lim 3,

and so on, for any finite number of variables.

Theorem 6. If the quotient of two variables as, y is vari-

able, then the limit of their quotient is equal to the quotient

of their limits, provided these limits are not both infinite or

not both zero.

(Th. 5)

y lim y

4. Continuity of functions. When an independent variable x,

in passing from a to b, passes through every intermediate

value, it is called a continuous variable. A function f(x) of an

independent variable x is said to be continuous at any value xl}

or in the vicinity of xXi when f(x^) is real, finite, and determi-

nate, and such that in whatever way x approaches a^,

From the definition of a limit it follows that corresponding

to a small increment of the variable, the increment of the

For, since
X

x = -y,
y

lim x = lim - lim yy

y

and hence
,. x lim x
lim - =
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function is also small, and that corresponding to any number

c, previously assigned, another number 8 can be determined,

such that when h remains numerically less than 8, the differ-

is numerically less than c.

2/,+e

a>.+5

Fig. 3

Thus, the function of Fig. 3 is continuous between the values

xx and xY -f- 8, while the functions of Fig. 4 and Fig. 5 are dis-

continuous. In the former of these two the function becomes

infinite at x = c, while in the latter the difference between the

value of the function at c + h and c — h does not approach

zero with h, but approaches the finite value AB as h ap-

proaches zero.

When a function is continuous for every value of x between

a and b, it is said to be continuous within the interval from a

to b.

5. Comparison of simultaneous increments of two related vari-

ables. The illustrations of Art. 2 suggest the following general

procedure for comparing the changes of two related variables.

Starting from any fixed pair of values x1} y^ represented graph-

ically by the abscissa and ordinate of a chosen point P on a

given curve whose equation is given, we change the values of
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x and y by the addition of small amounts h and k respectively,

so chosen that the new values xL + h and yl + k shall be the

coordinates of a point P2 on the

curve. The amount h added to xx

is called the increment of x and is

entirely arbitrary. Likewise, k is

called the increment of y ; it is not

arbitrary but depends upon the

value of h ; its value can be calcu-

lated when the equation of the curve

is given, as is shown by equation (1). These increments are

not necessarily positive. In the case of continuous functions, h

may always be taken positive. The sign of k will then depend

upon the function under consideration. The slope of the line

PjP2 is then - and the slope of the tangent line at Pj is the

limit of - as h and consequently k approach zero.

The determination of the limit of the ratio of k to h as h and

k approach zero is the fundamental problem of the Differential

Calculus. The process is systematized in the following ar-

ticles. While the related variables are here represented by

ordinate and abscissa of a curve, they may be any two related

magnitudes, such as space and time, or volume and pressure of

a gas, etc.

6. Definition of a derivative. If to a variable a small incre-

ment is given, and if the corresponding increment of a contin-

uous function of the variable is determined, then the limit of

the ratio of the increment of the function to the increment of

the variable, when the latter increment approaches the limit

zero, is called the derivative of the function as to the variable.
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k
That is, the derivative is the limit of - as h approaches zero,

or
liin (k

For the purpose of obtaining a derivative in a given case it is

convenient to express the process in terms of the following steps:

1. Give a small increment to the variable.

2. Compute the resulting increment of the function.

3. Divide the increment of the function by the increment of

the variable.

4. Obtain the limit of this quotient as the increment of the

variable approaches zero.

7. Process of differentiation. In the preceding illustrations,

the fixed values of x and of y have been written with sub-

scripts to show that only the increments h, k vary during the

algebraic process of finding the derivative, also to emphasize

the fact that the limit of the ratio of the simultaneous incre-

ments h, k depends upon the particular values which the

variables x, y have, when they are supposed to take these in-

crements. With this understanding the subscripts will hence-

forth be omitted. Moreover, the increments h, k will, for

greater distinctness, be denoted by the symbols Ax, Ay, read

" increment of x," " increment of y."

If the four steps of Art. 6 are applied to the function

y = <£ (x), the results become

y + £fy=<f>(x + \x),

Ay = <j>(x + Ax) — <f>(x) = A<f> (x),

Ay _<f>(x + Ax) — <j> (x) _ A<£ (x)

Ax Ax Ax

. lira -
AJ = Km {

+(* + **)- »(*) | =Um Aj>^
A# Ax Ax
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The operation here indicated is for brevity denoted by the

symbol — , and the resulting derivative function by <f>'(x); thus
dx

dy _d<f>(x) _ lim f
<f>(x + Ax)-<j>(x)

'

dx dx Aa; = Ax
= +-(*).

The new symbol -^ is not (at the present stage at least) to
ax

be looked upon as a quotient of two numbers dy, dx, but rather

as a single symbol used for the sake of brevity in place of

the expression " derivative of y with regard to x."

The process of performing this indicated operation is called

the differentiation of
<f>

(x) with regard to x.

EXERCISES

Find the derivatives of the following functions with regard to x.

5. I.
X3

6. xn, n being a positive integer.

7-2

7.

1. x2 - 2x-, 2x\ 3; x.

2. 3x*-4:x + 3.

3.
1

4*'

4. **-2 + i.
X2

9. y = Vx.

10. y = x~$.

8.

ar+1

x

f 1

[Put #
2 = x, and apply the rules.]

8. Differentiation of a function of a function. Suppose that y,

instead of being given directly as a function of x, is expressed

as a function of another variable u, which is itself expressed

as a function of x. Let it be required to find the derivative

of y with regard to the independent variable x.

Let y =f(u), in which u is a function of x. When x changes

to the value au + Aaj, let u and y, under the given relations,
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change to the values u + Aw, y + A?/. Then

A?/ _ Aw Aw

,

Aa;
—
Aw Ax

hence, equating limits (Th. 5, Art. 3),

dy _dy da _ df(u) du

dx
~~
du dx~ du dx

This result may be stated as follows

:

The derivative of a function of u with regard to x is equal to

the product of the derivative of the function with regard to w, and

the derivative of u with regard to x.

EXERCISES

1. Given v = 3u2 -l, M = 3x2 + 4; find ^-

dy du

du dx

dx du dx K '

2. Given ?/ =3m2 -4u+ 5,« = 2x3 -5; find ^

•

3. Given y = -,w = 5a;2 -2x + 4; find ^ •

1 -r
3 3 _ , rfv

3 m 2 3 a:
3 aar



CHAPTER II

DIFFERENTIATION OF THE ELEMENTARY FORMS

dv
In recent articles, the meaning of the symbol -f was ex-

ctx

plained and illustrated ; and a method of expressing its value,

as a function of x, was exemplified, in cases in which y was a

simple algebraic function of x, by direct use of the definition.

This method is not always the most convenient one in the dif-

ferentiation of more complicated functions.

The present chapter will be devoted to the establishment of

some general rules of differentiation which will, in many cases,

save the trouble of going back to the definition.

The next five articles treat of the differentiation of algebraic

functions and of algebraic combinations of other differentiable

functions.

9. Differentiation of the product of a constant and a variable.

Let y = cu,

Then y + Ay = c(u + Au),

A?/ = c(m + Au) — cu = cAu,

Ay Au
Ax Ax'

therefore
dy du

dx~~ dx

Thus d(cu) _ du
dx dx

25

(1^
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The derivative of the product of a coyistant and a variable is

equal to the constant multiplied by the derivative of the variable.

10. Differentiation of a sum.

Let
2/
== M_[_<y_ W;_j_ ...

in which u. v, w, ••> are functions of x.

Then y + Ay = u + Au + v + Av — w — Aw + • • •,

Ay = Au + A?; — Aiv + • • •,

Ay _ Au ,Av_ Aw
Ax Ax Ax Ax '

dy _du dv dw
dx dx dx dx

Hence -f(u + v- w+ ...)=f^+^-^+ .. (2)
doc doc doc doc

The derivative of the sum of a finite number of fractions is

equal to the sum of their derivatives.

Cor. If y = u + c, c being a constant, then

y + Ay = u + Au + c,

hence Ay = Au,

and dy = du

dx dx

This last equation asserts that all functions which differ

from each other only by an additive constant have the same

derivative.

Geometrically, the addition of a constant has the effect of

moving the curve y = u(x) parallel to the y-axis ; this opera-

tion will obviously not change the slope at points that have

the same x.

-c /rtN dy du ,
dc

From (2), -f-
=— +—

;

dx dx dx
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but from the fourth equation above,

dy _du
%

dx dx'

dc
hence, it follows that — = 0.

dx

The derivative of a constant is zero.

If the number of functions is infinite, Theorem 4 of Art. 3 may not

apply; that is, the limit of the sum may not be equal to the sum of

the limits, and hence the derivative of the sum may not be equal to

the sum of the derivatives. Thus the derivative of an infinite series

cannot always be found by differentiating it term by term.

11. Differentiation of a product.

Let y = uv, wherein u, v are both functions of x.

Then ^=(U + *UW + *V)- UV = u^ +v^ +^ . to,.
Ax Ax Ax Ax Ax

Now let Aa; approach zero, using Art. 3, Theorems 4, 5, and

noting that if — has a finite limit, then the limit of Avf—)
Ax \AxJ

is zero.
'

The result may be written in the form

d(uv) = u dv + vdu (3)
doc dx doc

The derivative of the product of two functions is equal to the

sum of the products of the first factor by the derivative of the sec-

ond, and the second factor by the derivative of the first.

This rule for differentiating a product of two functions may
be stated thus : Differentiate the product, treating the first

factor as constant, then treating the second factor as constant,

and add the two results.
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Cor. To find the derivative of the product of three functions

uvw.

Let y = uvw.

By (3),
*y = w±(uv)+uv^
dx dx dx

= w(u dv du\ dw
dx dx

)

dx

The result may be written in the form

d(uvw) =uvdw + vwdu + wudv (4
doc dx dm dx

By induction the following rule is at once derived

:

The derivative of the product of any finite number of factors is

equal to the sum of the products obtained by midtiplying the de-

rivative of each factor by cdl the other factors.

12. Differentiation of a quotient.

Let y = - , u, v both being functions of x.

Then

u -f Au u Au Av
! V U

A?/ v -\- Av v _ Ax Ax
Ax ~~ Ax v(y + Av)

Passing to the limit, we obtain the result

v du- u dv
d (u\- dx dx

(5)
dx\v J v1

TJie derivative of a fraction, the quotient of two functions, is

equal to the denominator multiplied by the derivative of the nu-

merator minus the numerator multiplied by the derivative of the

denominator, divided by the square of the denominator.
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13. Differentiation of a commensurable power of a function.

Let y = un
, in which it is a function of x. Then there are

three cases to consider

:

1. n a positive integer.

2. n a negative integer.

3. n a commensurable fraction.

1. n a positive integer.

This is a particular case of (4), the factors u, v, w, ••• all

being equal. Thus
dy n_ x du

dx dx

2. n a negative integer.

Let n = — m, in which m is a positive integer.

Then y = un = u~m = —

,

«* d
l =^- dl by (5), and Case (1)

hence

dx u2m dx

— mu~m~idu,
dx'

dy _
dx

n-l dtt
wit" —

•

dx

3. 7i a commensurable fraction.

Let n=*-, where p, g are both integers, which may be either
• q

positive or negative.
p

Then y= un = u9
;

hence if = fir,

and

i.e.

dec cte
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Solving for the required derivative, we obtain

dx V dx
J

hence -*-Un = nun - 14".
(6)

dx, doc

The derivative of any commensurable power of a function is

equal to the exponent of the power multiplied by the power with

its exponent diminished by unity, multiplied by the derivative of

the function.

It should be noticed that Vu = it
2
,

u

hence ±^=±*«
>

±(1\== 1*».
dx 2^/u dx dx\u) u2 dx

These theorems will be found sufficient for the differentia-

tion of any function that involves only the operations of addi-

tion, subtraction, multiplication, division, and involution in

which the exponent is an integer or commensurable fraction.

The following examples will serve to illustrate the theo-

rems, and will show the combined application of the general

forms (1) to (6).

ILLUSTRATIVE EXAMPLES

t 3 x1 - 2 ~ , dy
1. y = ; find -*-•

J
x + 1 dx

(x + l)-f(3 *»- 2) - (3x3 - 2) L (x-r 1)
d
/ = ~ 7—TO ^ ^^
dx (x + l) 2

± (3^-2)=^ (3^)--f(2) (by 2)
dx dx dx

= 6x. (by 1,6)

f(si-l)=£? = l. (by 2)
ax dx
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Substitute these results in the expression for -f- . Then
dx

dy = (x + 1)6 x - (3 x2 - 2) = 3 x* + 6 x + 2

. <fc (*+l) 2 (x + 1)
2

2. u = (3s2 + 2)Vl + 5s2
; find ^?.

^ = (3 s2 + 2) - VI + 5 s2 + Vl + 5s2
• — (3 s2 + 2) . (by 3)

ds ds ds

—vTToT2 =— (1 + 5 s2)*
</* ds .

= l(l+5s2)-^(l + 5s2
) (byG)

2 as

5s

Vl + 5 s2

-^(3s2 + 2>=6s. (by 6)
ds

Substitute these values in the expression for — Then
ds

du = 5jjS* + 2)
, 6gVrTT72 = 45*»+.16»

rf* Vl + 5s2 Vl~+5s2

3 v= vr+^ + vr^g;find $.
Vi + x2 - vT^2 d*

First, as a quotient,

(VT+T2 - VI - x*)^(VTTx* +VI^2
)

</a; (Vl + z2 -Vl-x2
)
2

(Vi + x2 + vi - x2
)— (vrr^2 - vi - x2

)

,
^

, (by 5)
(Vl + z2 - Vl-z2

)
2

— (vr+T2 + vr^) = -^ vrr^2 + — vn^2
. (by 2)

dx dx dx

•-f
VIT^ = # (1 + *2)* = 1 (1 + *2

)
_i

-7- (1 + *2
)- (by 6)

dx dx 2 dx

lL(l+x*)=2x. (by 2 and 6)
dx
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Similarly for the other terms. Combining the results, we have

dx x3

{ VI - X*J

Ex. 3 may also be worked by first rationalizing the denominator.

EXERCISES

Find the ^-derivatives of the following functions

:

1. y = xxo
.

2. y — x~ s
.

3. y = cVx.

4.
2 Vi

'' Vx 3

5. y = v/^'~5 -

6. y = (x + a) n
.

7. y — xn -\- an .

8.
X

y = .

14. y = (2 a\ + x2)Vai + ^i.

15 y-i * r
|l + Vl-**J

16.

1.7-
:r
n

-f 1
v ——-—S

xn - 1

18 1 1

(a + x)m (b + x) w

19.
3x3 + 2

v = —-
Va2 - x* X (x

s + !)|

9 y== «jL?. 20. y = 3(x2 + l)t(4x2 -3).
x2 + 2

21. y = 3 m" - 7.

10. 2/=(* + l)vW2. 22> y = 4w3_ 6w2+1 o M _ 3 .

11.
Va + a 23. y =(1-3 u2+ 6u4)(l + u2

)
3

.

v« + V* 24. 7/ = us.

i2. y = JT±J 25
- $ = M* + 3 *w2 + *4

-

1 ~ X
"

26. y = "" .

13.,= *==. (« + *>•

x + Vl — x2 27. y = t*
2
j?
8
io.

28. Given (a + a:)
5 = a5 + 5 a 4x + 10 «3

-r
2 + 10 a 2x3 + 5 a*4 + x*

;

find (a + x) A by differentiation.

29. Show that the slope of the tangent to the curve y = x3 is never

negative. Show where the slope increases or decreases.
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30. Given b2x2 + a2
y
2 = d2b2

, find
d
JL : (1) by differentiating as to
dx

x
; (2) by differentiating as to y ; (3) by solving for y and differen-

tiating as to x. Compare the results of the three methods.

31. Show that form (1), p. 25, is a special case of (3), p. 27.

32. At what point of the curve y
2 = ax3 is the slope ? — 1 ? + 1 ?

33. Trace the curve y = x3 + 3x2 + x — 1.

34. y
- -

3 ^2
+ 7 and u = 5 x2 - 1 ; find

(Jl .

V7 u 2 + 5 tf*

35. At what angle do the curves y
2= \2x and y

2+ x2 + ;r — G3 =

intersect ?

14. Differentiation of implicit functions. When a functional

relation between x and y cannot be readily solved for y, the

preceding rules may be applied directly to the implicit function.

The derivative will usually contain both x and ?/. Thus the

derivative of an algebraic function, defined by equating a poly-

nomial in x and y to zero, may be obtained by the process illus-

trated in the following examples :

Ex. 1. Given the function y of x, defined by the equation

x5 4- y
r
° — 5 xy + 1 = 0,

find^.
dx

Since
dx

- 5 xy + 1) = 0,

hence 5x4 + 5</^-5
.
dx y - r d

- 5 x ,- =
dx

o, G>:f2, 3)

Solving for -*.
, we obtain

dx
<]y _
dx

•' 4

x -

-7/

Ex. 2. xy2 -\- x2y = 1. Find
dy

dx

Ex. 3. *+ y + (x-y) 2 +(2 x — 3 2/)
3 = 0. Find

EL. CALC. —

3
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15. Elementary transcendental functions. The following func-

tions are called transcendental functions :

Simple exponential functions, consisting of a constant

number raised to a power whose exponent is variable, as

4X
, a*

;

the logarithmic functions, as loga x, log
6 u ;

the incommensurable powers of a variable, as x^2
, un ;

the trigonometric functions, as sin u, cos u

;

the inverse trigonometric functions, as sin
-1

u, tan-1 x.

There are still other transcendental functions, but they will

not be considered in this book.

The next four articles treat of the logarithmic, the two ex-

ponential functions, and the incommensurable power.

16. Differentiation of loga od and loga u.

Let y = loga x.

Phen y-\-Ay = loga (x + Ax),

Ay loga (x + Ax) — loga x

Ax Ax

Liog/*_±M
iX \ X JAx

For convenience writing h for Ax, and rearranging, we obtain

Ay
Ax
_l.«Wl+»)

x h \ xj

H-;»»K'+;)i-
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SB

f h\*To evaluate the expression
(
1 + -

)
when h = 0, expand it

by the binomial theorem, supposing - to be a positive inte-

ger m.

The expansion may be written

\ mj m 1-2 m2 1-2-3 m3

which can be put in the form

\ mj 1 2 ^1 2 3

1 2Now as m becomes very large, the terms — , — , ••• become
in m

very small and m increases without limit as h approaches zero.

As m = cc the series approaches the limit

1 + 1+— +— +— + •••,

2 ! 3 ! 4

!

which will be discussed later.

The numerical value of this limit can be readily calculated

to any desired approximation. This number is an important

constant, which is denoted by the letter e, and is equal to

2.7182818-..; thus

lim A +IV = e = 2.7182818-...*

* This method of obtaining e is rather too brief to be rigorous ; it assumes

that — is a positive integer, but that is equivalent to restricting Ax to ap-
Ax

proach zero in a particular way. It also applies the theorems of limits to the

sum and product of an infinite number of terms. The proof is completed on

p. 315 of McMahon and Snyder's " Differential Calculus,"
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The number e is known as the natural or Naperian base;

and logarithms to this base are called natural or Naperian log-

arithms. Natural logarithms will be written without a sub-

script, as logcc; for other bases a subscript, as in \oga x, will

generally be used to designate the base. The logarithm of e to

any base a is called the modulus of the system whose base is a.

X

li / 7A*
If the value ,

™
f 1 + - ) = e is substituted in the expres-

sion for _?, the result is

dx
dy 1 ,/ = - • log, e.

ax x

More generally, by Art. 8,

d , logffle du f mss log„ M =-
s
-^. (7)

In the particular case in which a = e,

d . _ 1 du /ox

doc
~~ u dx

The derivative of the logarithm of a function is the product of

the derivative of the function and the modulus of the system of

logarithms, divided by the function.

17. Differentiation of the simple exponential function.

Let / y = au
.

Then log y = u log a.

Differentiating both members of this identity as to x, we obtain

1 dy , du ,, oX

dy , du

therefore -j- <*>u = l«g a • a '1
" ^ ^
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In the particular case in which a = e,

d du , + n x

as •"=•"• a*-
(10)

The derivative of an exponential function with a constant base
»

is equal to the product of the function, the natural logarithm of

the base, and the derivative of the exponent.

18. Differentiation of an incommensurable power.

Let y = un
,

in which n is an incommensurable constant. Then

log y = n log u,

1 dy _ n du

ydx u dx'

dy_ y du

dx u dx'

d _ __, du

dx dx

This has the same form as (6), so that the qualifying word

" commensurable " of Art. 13 can now be omitted.

EXERCISES

Find the x derivatives of the following functions

1. y-= log(x+ a).

2. y-= log (ax + b).

3. y == log (4 x2 - 7 x 4-2)

4. y == logj
+ *.

1 — X

5.
2/

=

1 — X2

6. y == x log X.

7. y =- xn log X.

8. y =- xn log xm. N

9. y = log Vl — X2
.

10. y = Vx — log ( y/x + 1)

.

11. y = \oga (3x2 -V2 + x).

12. y = log
10
(x2 + 7 x).

13. y = logx a.

14. y = e
xa

.

154 y = e4*+ 5
.

l

16. y=-el+x.
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17. y = —

-

—

.

18. y = e
x
(l -z«).

-X . — X

19. y

23.

24.

log
Vq -f Vx

e* + e~
x

20. y = log (e* - c-*).

21. y = log (x + e
x
).

22. v = xna*.

Va
1

logx'

25. 3/= (log*)*.

26. y = log (log a).

27. y

28. y = al°s

x log -

.

x

The following functions can be easily differentiated by first taking

the logarithms of both members of the equations.

31. ¥
=*&+*!.

32. y = x\a -f 3 x)\a - 2 x) 2
.

33. y = V(*+ g )'.

Vx — a

29.
(*-*)

(a;-2)*(a;-3)*

30. y = xVl - x(l + a:).

19. Limit of
sin

as 9 approaches 0. Before proceeding to

determine the derivatives of the trigonometric functions it is

necessary to prove the following lemma :

lim sin = 1.=

With as a center and OA = r

as radius, describe the circular

arc AB. Let the tangent at A
-4 meet OB produced in D; draw

Fig. 7 BC perpendicular to OA, cutting

OA in C. Let the angle OAB = in radian measure,

then arc AB = r#,

(75 < arc AB < .4Z), by geometry

i.e. r sin < r6 < r tan 0,

. sin 6 < < tan 0.
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By dividing each member of these inequalities by sin 0,

1 <^-<sec0;
sin

but sec = 1, when =

sin

, lim ., A lim sin -,

hence
> 0=o^ = 1

>
and »=o-vr = 1

20. Differentiation of sin ?/.

Let y = sin u.

,p. Ay _ sin (u 4- A?/)— sin w Ait

A./
1 Aw A/

To evaluate the expression

sin (u + Aw)— sin w,

we make use of the formulas for the sine of the sum and the

sine of the difference of two angles. Since

sin (a + b) = sin a cos b 4- cos a sin b,

sin (a — b) = sin a cos 6 — cos a sin 6,

hence, by subtracting the second equation from the first,

sin (a + b) — sin (a — b) = 2 cos a sin b.

This equation is true for all values of a and of b. In particu-

lar, then, putting
'

'
F 5

a + 6 = w + Aw,

and a — b = u,

that is, a = u +— , and 6 =—

,

we obtain

sin (w + Aw) — sin w = 2 cos (u-\—-
)
sin—

.
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The expression for —J. may now be written in the form
Ax

Awsm—
A?/ / Au\ 2 A?*—^ = cos [u +— —-

,

Ax V 2 J Au Ax

hence
dy ..

-f- = cos u • li

m

dx Aw =

sm

2

Aw'

Aw
2~

c?w

dx~'

hence, by Art. 19, ^- sin w = cos u—
rfx doc

(ID

77>e derivative of the sine of a function is equal to the product

of the cosine of the function and the derivative of the function.

21. Differentiation of cos u.

Let ?/ = cos u — sinf - — u \

bl

dx dx

du

-w)-^( -u\
dx\2

d— i

doc
u = — sinu

doc
(12)

The derivative of the cosine of a function is equal to minus the

product of the sine of the function and the derivative ofthefunction.

22. Differentiation of tan u.

Let

Then

y = tan u
sin?*

cos?*

d . d
cos u • — sin u — sin u • — cos u

dy dx dx
- (bv 5)

dx
~~

cos- u

• o du . • Q . du
cosJ u h sm- U—

dx dx

du

dx
(by 11, 12)

cos2 u cos2 u

that is, ^tant* = sec
2 t*^

doc doc
(13)
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The derivative of the tangent of a function is equal to the

product of the square of the secant of the function and the deriva-

tive of the function.

Since the remaining elementary trigonometric functions

can be expressed as rational functions of those already con-

sidered, their derivatives can be obtained by means of the

preceding rules. The results are

4-wtu= -csc2 t*^. (14)dx dx

~ sec u = sec u tan u — • (15)dx dx

lL esc u = - esc w cot w— (16)dx dx

EXERCISES

Find the ^-derivatives of the following functions

:

1. y — sin 7 x.

2. y — cos 5 x

3. y = sin x2.

4. y = sin 2 x cos x.

5. y = sin8 x.

6. y = sin 5 x2 .

7. y = sin2 7 x.

8. y — \ tan 3 x — tan x.

9. y = sin3 x cos x.

10. ?/ = tan x + sec x.

11. y = sin2 (1-2 x2
)
2

.

12. # = tan (3 -5 a;
2
)
2

.

13. y — tan 2
a: — log (sec2

a;).

14. y =log tan ($# + Jir).

15. y = logsinVx. 29. ?/ — tan (x -f y)

.

16.

* i

y = tan a*.

17. y = sin narsinn a;.

18. y = sin (w + b) cos (w — J).

19.
sinm nx

y = .

cosnmx

20. y = x + log cos ( x -
j J.

21. ?/ = sin (sin t/).

22. ?/ = sin2 ^.
23. y = sin ex • log a\

24. ?/ = Vsin x2
.

25. y = esc2 4 x.

26. y — sec(4 x — 3)
2

.

27. r/ = cot x2
-f sec Var.

28. y ~ sin a:?/.
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30. Find — (cos u) directly from the definition of the derivative.
dx

Also — (tan u).
dx

31. Find — (cos u) from the relation sin 2 u + cos2 u = 1.
dx

23. Differentiation of sin- 1 u-

Let y = sin~ 1
u.

Then sin y = u,

and, by differentiating both members of this identity,

dy ,du
cos y — = —

;

d# dx

hence
dy _ 1 fZw 1 d?t.

da; cos ?/ d.r _j_ Vl— sin2y dx
'

d • _i 1 dw
i.e. —- sm-1

it = ±
d# VI _ tf d^

The ambiguity of sign accords with the fact that sin-1 u is a

many-valued function of u, since, for any value of u between

— 1 and 1, there is a»series of angles whose sine is u : and, when u

receives an increase, some of these angles increase and some

decrease; hence, for some of them,
sm—- is positive, and
du

for some negative. It will be seen that, when sin
-1 u lies in

the first or fourth quarter, it increases with u, and, when in

the second or third, it decreases as u increases. Hence, for the

angles of the first and fourth quarters,

jL Sin- 1
!* = --f- COS" 1 !*:= +—1— gg. (17)

€loc doc VI — «*2 dor

In the other quarters the minus sign is to be used before

the radical.
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The derivatives of the other inverse trigonometric functions

can be easily obtained by the method employed in the present

article. The most important of the remaining ones are tan-1 u,

sec
-1 u

;

4- tan" 1 u = - 4- cot
1 u = -L-^.

doc ddc l + u2 doc

x sin -1 a;.
2. y = cos -1Vl — x'2. 17 # y

3. y = sin-i (3 x - 1). 18. y = e**"
1
*.

4. y = sin-1 (3x -4 x3
). 1Q _., 1

1 — x2

5. y = sm-i-—-•

1 + r
6. y = vsin -1

x.

1. y — tan -1 ?*.

8. y = cos-1 log x.

9. y = sin-1 (tan a-).

10. y = sec -1 —
VI -x2

11. # = CSC -1 -•
a:

12. y^tan^f 1

V Va:2 - 1

13. y = tan- 1 -*

14. y = sin" 1 Vsin x.

15. y = tan-1V^^
1 -f cos

(18)

-^-sec
~1 u = --^-csc-1 m = !__*•.

(19)
das dx u^u2—l (lQC

EXERCISES

Find the ar-derivatives of each of the following functions

:

1. y = sin -1 2 x2
. 16. y = tan a; • tan-1

x.

2 a;
2 - 1

20. y = sec" 1 *L±i.
^

a;
2 - 1

21. y-tan-lV^+ V«.

1 — V«ar

22. y = cos x

23. y = tan-1 (n tan a).

24. y = cos -1 (cos 2 a-).

25. y = cos-1 (2 cos a:).

26. y = tan -1 (Vl + x2 - X).

27. y = 2 tan" 1aL— '

M + a:

28. y = tan -1 —|- tan
iV3

.^b-x

a:V3
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24. Table of fundamental forms.

d(cu) = c
du

. (1)dx dx

Jt {u + V -. w)= du+dv_dw. 2dx dx dx dx

*&»1 =u^ +v^ (3)dx dx dx

d-(uvw) = uvm + vwm + wu <M. (4)dx dx dx dx

v du_ u dv
d u _ dx dx
dx v »,2

(5)

^aw =loga-au ^ (9)
da? da?

A e« =eud̂ (10)
<ia? da?

-f-sinw =costi~> (11)
<?a? da?

^-cosi* =-smu dw
. (12)

c?a? da?

^tanw =sec*tt^. (13)
da? da?

-£- cot ft = - esc2 u d̂
(14)

da? da?
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4- sec u = sec u tan u ^- (15)
doc doc

^cscu = -cscMcotw~ (16)
doc doc

JL sin l u=-4- COS"1 M = 1 *L (17)
«a? «a? Vi _ ^2 «a?

4- tan"1 t* = -# cot 1 w = —1— *!. (18)dx doc i + w2 da?

4- sec 1 u=-~- esc 1 t* = -J ^* (19)
doc doc u y/u* -i d&

EXERCISES ON CHAPTER II

Find the ^-derivatives of the following functions :

1. y = 3 Z2 + 5 a,-
3 - 7.

o 3 5 1

3. y = (x + 5) Vx - 3.

4. ?/ = xVa'2 — x2
.

5. ?/ = x log sinx.

a

10. y = log-- .

a*

11.
1-x2

y =
Vl + x2

12. y = e
x
cos x.

13. , = 00^(1).

14.
. , 4 sin x

?/ = tan -1

3 + 5 cos x

15 v — (x 4- rtH.an- 1 -!/-

6 - y=-V«2_ x2.

( r2 ?
> 7. y= c- ec-

x

8. J,= ta„2z,z = t.n-i(2»-l). ^
. 16. w = cot x—

—

—
2 9. y = eVu , u = log sin x. a;

17. ?/ = tan4 x — 2 tan 2 x +.log(sec* x).

18. y = £l2«£+log(l- a;).

19. y = C0S-i
3 + 5c0S:C

.

5 + 3 cos x
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20. y.= log (l±£^-|tan-i*.

21. # = log (x + Vx2 - a 2
) + sec" 1 --

a

22. y = eu , u — log x. 25. x2
?/
2 + x8 + y

3 = 0.

23. y = log s2 + e", s = sec x. 26. x3
-f x = y + y

8
.

24. xs + y
s — 3 axy = 0. 27. xy2 + x2# — x-\-y.

28. y = sin (2 u - 7), u = log x2
.

29. By means of differentiation eliminate the constant p from the

equation y =px2
.

30. At what points is the tangent to the curve y = cos x parallel to

the x-axis ?

31. Show that the x-derivative of tan -1 \ ~~ cos x
is not a func-

* 1 + cos X
tion of x.

x2
?/
2

32. Find at what points of the ellipse h *— — 1 the tangents cut
_, . a2

Z>
2

off equal intercepts on the axes.

33. Find the points at which the slope of the curve y = tan x is

twice that of the line y = x.

34. Find the angle which the curves y = sin x and y = cos x make

with each other at their point of intersection.



CHAPTER III

SUCCESSIVE DIFFERENTIATION

25. Definition of nth derivative. When a given function

y~<f>(x) is differentiated with regard to x by the rules of

Chapter I, then the result dy

is a new function of x which may itself be differentiated by the

same rules. Thus, 7 , , . ,

dx\dxj dx

The left-hand member is usually abbreviated to _J?, and the
dx2

right-hand member to <f>"(x) ; that is,

Differentiating again and using a similar notation, we obtain

±(cPy\_d*i_
dx\dx2

J dx3

and so on for any number of differentiations. Thus the sym-

d2
y

bol -r^ expresses that y is to be differentiated with regard to x,

and that the resulting derivative is then to be differentiated.

ds
y . . d

Similarly, -^ indicates the performance of the operation —
three times, j-( j~(;p ))• ^n general, the symbol -~ means

that y is to be differentiated n times in succession with regard

to x.

47
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Ex. 1. If y = x4 + sin 2 x,

-£ = 4 x8 + 2 cos 2 x,
ufx

g = 12x2 -4sin2x,

?^ = 24x-8cos2x,
«x3

^ = 24 + 16sin2x.
dx4

If an implicit equation between x and y is given and the

derivatives of y with regard to x are required, it is not neces-

sary to solve the equation for either variable before perform-

ing the differentiation.

Ex. 2. Given x4 + y
4 + 4 a 2xy = ; find v^

.

dx'2

^-(x* + y*+±a 2xy)=0,

4 x8 + 4 ?/
3^ + 4 a 2*^ + 4 a2# = 0.

The last equation is now to be solved for -j-,

dy xs + a2
y

dx y
s + a2x

Differentiating again, we obtain

(i)

d 2
y _ d fx

8 + a2y\

dx2 ~ dx\y8 + a2x]w
(y8 + a2x)— (x3 + a 2

y) - (x8 + a*y) JL (y8 + a2x)
dx ' dx

(y
TT~a 27y2

(y
8 + a2x) ('dx 2 + a2 '-

1
!') - (x8 + a2

?/) fsv2^ + a")

V '/x/ "

V ax /

(*/
3 + d2x) 2
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The value of JL from (1) is now to be substituted in the last
dx

equation, and the resulting expression simplified. The final form

may be written :

dhj 2 a*xy - 1 a 2xs
y
s - a4O4 + y

4
) - 3 x2

y
2O4 + #

4
)

dx2 ~
(y

8 + a2x) 8

In like manner higher derivatives may be found.

26. Expression for the nth derivative in certain cases. For cer-

tain functions, a general expression for the nth derivative can

be readily obtained in terms of n.

where n is any positive integer. If y = eax ,
~- = aneax .

Ex. 2. If y '= sin x,

dy 1 tt\
^|=cos:r = sin^+^j,

g=cos(x +
|)

= sin(x+^),

6/
nv . / n7r\

If y~-- sin ax.
dny 1 mr\
d^

= aSln
[
ax+ 2-)-

EXERCISES ON CHAPTER III

1. y=3x*+5x2+3x-9; find^. 5. ij = tana:; find ^l.
dx3 J

dx8

2. y = 2x2 + Zx + 5; find v|. 6. y = e*logz; find ^X

3
' ^ = * ;

fmd S' 7."y = *«loga:j find g.

4. y = ^ _I2
; find g. 8. y = sec**; find g.

EL. CALC. —

4
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9. y = logsina:; find g. 18. 3^^-p find J*.

10. y = sin x cos a; ; find -r\> 19. y z= cos ma: ; find ~^-

U. , =^L ;
flnd% 20. y = ,

X
. ; find £».

12. y = ** logs'; find ^. 21. y = log (a + *)"; find J.
,

13. y = sin,; find g. 22. y
2 = 2^; find g-

14. y = log (* + *-) ; find g • 23. J + £ = 1 ; find g.

15. y = (^- 3^ + 3)^; find g. 24. a* + y
3 = 3axy; find g-

t

16. 3/ = a;
4 log a;; find g. 25. «+» = zy; find g.

17. y = eax
I
find g- 26. y = 1 + xe* ;

find ^-

du (in
27. y = «*sina;; prove ^J,-2-^+2y

= 0.

28. y = aa;sina;; prove x2~ - 2a; -£ + 2 + 2)y = 0.

d2
y

29. y = axn+1+ bx~n
\
prove a;

2

^J>
= n(n + l)y.

30. y =(sin-^)2; prove (1 - z2
)^2

- X-+ = 2.

»» =££ P^g- 1-*

_ , dny
32. y = xn_1 loga:; find -=-£•

33. „ = *.; prove ^ =2^-^ + 9«-.

34. y = cos2
a:; find -^.



CHAPTER IV

MAXIMA AND MINIMA

27. Increasing and decreasing functions. A function is said

to be increasing if it increases as the variable increases and

decreases as the variable decreases. A function is said to be

decreasing if it decreases as the variable increases and increases

as the variable decreases. When the graph of the function is

known it will indicate whether the function is increasing or

decreasing for an assigned value of x ;
conversely, a knowledge

of the fact whether a function is increasing or decreasing is of

great assistance in drawing the graph. Usually a function is

increasing for certain values of x and decreasing for others.

28. Test for determining intervals of increasing and decreasing.

Let y — 4>(x) be a continuous function having a derivative for

all values of x from a to b. By the above definition y is in-

creasing or decreasing at a point xl, according as

k = Qfa + h) - <£(zi)

has or has not the same sign as h, where h is a sufficiently

small number. Hence <f>(x) is an increasing or a decreasing

function at the value xx according as

is positive or negative.

51
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Thus, the function y = <f>(x) is increasing, if <f>'(x) is positive

;

if 4>'(x) is negative, the function is decreasing.

In order that a function shall change from an increasing

function to a decreasing function or vice versa, it is necessary

and sufficient that its derivative shall change sign. If the

derivative is continuous, this can happen only when the deriva-

tive passes through the value zero. The derivative may also

change sign when it becomes infinite, and, notwithstanding

this discontinuity of the derivative, the original function may

still be continuous. In the graph of the function this requires

that at such a point the tangent to the locus shall be parallel to

the y-axis. The process will be illustrated by a few examples.

Ex. Find the intervals in which the function

<f>(x) = 2 a;
8- 9a;2 + 12a; - 6

is increasing or decreasing. The derivative is

<f>'(x) = 6a;2 - 18 a; + 12 = Q(x - \){x - 2);

hence, as x passes from -co to 1, the derived function <f>'(x) is posi-

tive and <f>(x) increases from <£( — oo)

to <£(1), i>e. from <f>=—ccto<f>= — 1;

as x passes from 1 to 2, <f>'(x) is nega-

tive, and <f>(x) decreases from <£(1) to

<£(2), i.e. from — 1 to - 2; and as x

passes from 2 to + co, <£'(*) is posi-

tive, and <f>(x) increases from <£(2) to

<£(ao), i.e. from — 2 to + oo . The

locus of the equation y = <£(a;) is shown

in Fig. 8. At points where <f>'(x) = 0,

the function <f>(x) is neither increas-

ing nor decreasing. At such points

the tangent is parallel to the axis of x. Thus in this illustration, at

x = 1, x = 2, the tangent is parallel to the x-axis.

Fig. 8
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EXERCISES

1. Find the intervals of increasing and decreasing for the function

<f>(x) = xs + 2x2 + x - 4.

Here <£'(*) = 3x2 +4.r+l = (3z+ l)(x + 1).

The function increases from x = — coto x = — 1 ; decreases from

a: = — ltoar=-— |; increases from a: = — \ to a: = go .

2. Find the intervals of increasing and decreasing for the function

y = Xs - 2 x2 + x - 4,

and show where the curve is parallel to the a>axis.

3. At how many points can the slope of the tangent to the curve

# = 2x3 -3x2 + l

be 1 ? - 1 ? Find the points.

4. Compute the angle at which the following curves intersect ;

y = 3 x2 - 1, y = 2 x2 + 3.

29. Turning values of a function. It follows that the values

of x at which
<f>

(x) ceases to increase and begins to decrease

are those at which <j>'(x) changes sign from positive to nega-

tive ; and that the values of x at which
<f>

(x) ceases to decrease

and begins to increase are those at which <f>'(x) changes its

sign from negative to positive. In the former case, <£(#) is

said to pass through a maximum, in the latter, a minimum,

value.

Ex. 1. Find the turning values of the function

<£0) = 2 xs - 3 x2 - 12 x + 4,

and exhibit the mode of variation of the function by sketching the

curve , , x

V = <KX)-

Here <f>'(x)=6x2 - Qx- 12 = 6(z + 1)0 - 2),
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Fig. 9

9, - 16, - 5, 36, oo.

hence <j>'(x) is negative when x lies between - 1 and

+ 2, and positive for all other values of x. Thus <f)(x)

increases from x = - oo to x = - 1 ; decreases from

{ x =— 1 to a: = 2; and increases from x = 2 to x = oo.

Hence </>(- 1) is a maximum value of <f>(x), and

<f>(2) a minimum.

The general form of the curve y = <f>(x) (Fig. 9)

may be inferred from the last statement, and from

the following simultaneous values of x and y :

x = - oo, - 2, - 1, 0, 1, 2, 3, 4, oo.

y = -co, 0, 11, 4,

Ex. 2. Exhibit the variation of the

function <f>(x) = (x—l)~$+ 2,

especially its turning values.

Since <f>'(x) = - -,

6 (x - 1)*

hence <f>'(x) changes sign at x = l,

being negative when x < 1, infinite

if x = 1, and positive if z> 1. Thus

<f>(l) = 2 is a minimum turning value

of tf>(x). The graph of the function

is as shown in Fig. 10, with a vertical tangent at the point (1, 2).

Ex. 3. Examine for maxima and minima the function

Fig. 10

<f>(x) = (x

1

iy + 1,

Here <f>'(x) =
3 0-l)§

Fie. 11

hence cf>'(x) never changes sign, but is always

positive. There is accordingly no turning-

value. The curve y =' <f>(x) has a verti-

cal tangent at the point (1, 1), since -^
dx

is infinite when x= l. (Fig. 11.)
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30. Critical values of the variable. It has been shown that

the necessary and sufficient condition for a turning value of

<f>(x) is that <f>'(x) shall change its sign. Now a function

can change its sign only when it passes through zero, as in

Ex. 1 (Art. 29), or when its reciprocal passes through zero,

as in Ex. 2. In the latter case it is usual to say that the

function passes through infinity. It is not true, conversely,

that a function always changes its sign in passing through

zero or infinity, e.g. x2 and x~2
.

Nevertheless all the values of x, at which <j>'(x) passes

through zero or infinity, are called critical values of x, be-

cause they are to be further examined to determine whether

<f>'(x) actually changes sign as x passes through each such

value ; and whether, in consequence,
<f>

(x) passes through a

turning value.

For instance, in Ex. 1, the derivative <f)'(x) vanishes when

x = — 1, and when x = 2, and it does not become infinite for

any finite value of x. Thus the critical values are — 1, 2,

both of which give turning values to
<f>

(x). Again, in

Exs. 2, 3, the critical value is x = 1, since it makes <f>'(x)

infinite ; it gives a turning value to <£ (x) in Ex. 2, but not

in Ex. 3.

31. Method of determining whether <f>'(&) changes its sign in

passing through zero or infinity. Let a be a critical value of x;

in other words, let <£'(a) be either zero or infinite, and let h

be a very small positive number, so that a — h and a + h are

two numbers very close to a, and on opposite sides of it. In

order to determine whether <f>'(x) changes sign as x increases

through the value a, it is necessary only to compare the signs

of <f>'(a -f- h) and <f>'(a — h). If it is possible to take h so
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small that cf>'(a —h) is positive and <f>'(a + h) negative, then

cf>'(x) changes sign as x passes through the value a, and

<f>(x) passes through a maximum value <f>(a). Similarly, if

<j>\a — h) is negative and <f>'(a + h) positive, then <f>(x) passes

through a minimum value <£ (a).

If <f>'(a — h) and <j>'(a + h) have the same sign, however

small h may be, then
<f>

(a) is not a turning value of <£ (x).

Ex. Find the turning values of the function

4>0) = 0-i) 2 + i) 8
.

Here <f>'(x) = 2(x- 1)0 + 1)
8+ S(x - l) 2(x + l) 2

= (a:-l)(x+ 1) 2(5 x- 1).

Hence <j>'(x) becomes zero at x = — 1, \, and 1 ; it does not become

infinite for any finite value of x.

Thus, the critical values are — 1, |, 1.

Fia. 12

When x has any value less than — 1, the three factors of <f>'(x)

take the signs — + — , hence <f>'(x) is +, and when x has a value
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between — 1 and .J they become — + — , and <f>'(x) is still + ; hence

<f>(— 1) = is not a turning value of <f>(x).

When x has any value between \ and 1, the signs are — + + and

<f>'(x) is — ; hence <f>($) is a maximum.

Finally, if x has any value greater than 1, the signs are + + +;

hence <f>'(x) changes sign from — to + as x increases through 1, and

<£(1) = is a minimum value of <j>(x).

The general march of the function may be exhibited graphically

by tracing the curve y = <{>(x) (Fig. 12), using the foregoing results

and observing the following simultaneous values of x and y

:

x^-co, - 2, - 1, 0, \, 1, 2, go.

y = - oo, - 9, 0, 1, 1 • 1 ••-, 0, 27, oo.

32. Second method of determining whether <!>'(») changes sign in

passing through zero. The following method may be employed

when the function and its derivatives are continuous in the

vicinity of the critical value x = a.

Suppose, when x increases through the value a, that <j>'(x
)

changes sign from positive through zero to negative. Its

change from positive to zero is a decrease, and so is the change

from zero to negative ; thus <f>'(x) is a decreasing function at

x= a, and hence its derivative <£%e) is negative at x= a.

On the other hand, if <f>'(x) changes sign from negative

through zero to positive, it is an increasing function and <f>"(x)

is positive at x = a ; hence :

TJie function cf>(x) has a maximum value <f>(a), when <f>'(a) =
and <f>"(a) is negative; $(x) has a minimum value <f>(a), when

cf>'(a) = and <f>"(a) is positive.

It may happen, however, that <f>"(a) is also zero.

. To determine in this case whether <£(#) has a turning value,

it is necessary to proceed to the higher derivatives. If <f>(x) is

4
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a maximum, <j>"(x) is negative just before vanishing, and

negative just after, for the reason given above ; but the change

from negative to zero is an increase, and the change from zero

to negative is a decrease ; thus <f>"(x) changes from increasing

to decreasing as x passes through a. Hence (f>'"(x) changes

sign from positive through zero to negative, and it follows, as

before, that its derivative
<f>

IV
(x) is negative.

Thus <f>(a) is a maximum value of <f>(x) if <t>'(a) = 0, <f>"(a) = 0,

<f>'"(a) = 0, <j>
JV(a) negative. Similarly, <f>(a) is a minimum

value of <f>(x) if *'(«) = 0, <f>"(a) = 0, <£'"(a) = 0, and <£
lv(a)

positive.

If it happens that
<f>

lv
(a) = 0, it is necessary to proceed to

still higher derivatives to test for turning values. The result

may then be generalized as follows :

The function <£(#) has a maximum (or minimum) value at

x = a if one or more of the derivatives <£'(a), <f>"(a), <f>'"(a) vanish

and if the first one that does not vanish is of even order, and

negative (or positive).

Ex. Find the critical values in the example of Art. 31 by the

second method.

<f>"(x) = (x+iy(5x-l)+2(x-l)(x+l)(ox-l) + 5(x-l)(x + l)'i

= 4(5a:8 + 3a:2 -3x-l),

<£"(1) = 16, hence <£(1) i s a minimum value of <f>(x)',

<f>"(— 1) = 0, hence it is necessary to find <£'"( — 1)

;

<£'"(V) = 12(5 a:
2 + 2 a; - 1),

<£'"( — i.) — 24, hence <£(— 1) is neither a maximum nor a minimum

value of <j>(x).

Again, <£"(£) = 5(J - l)(i 4- l) 2 is negative, hence <£(£) is a maxi-

mum value of <£(V).
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33. The maxima and minima of any continuous function occur

alternately. It has been seen that the maximum and minimum

values of a rational polynomial occur alternately when the

variable is continually increased, or diminished.

This principle is true also in the case of every continuous

function of a single variable. For, let <£(a), <f>(b) be two

maximum values of <f>(x), iu which a is supposed less than

b. Then, when x = a + h, the function is decreasing ; when

x = b — h, the function is increasing, h being taken sufficiently

small and positive. But in passing from a decreasing to an

increasing state, a continuous function must, at some inter-

mediate value of x, change from decreasing to increasing, that

is, must pass through a minimum. Hence, between two maxima

there must be at least one minimum.

It can be similarly proved that between two minima there

must be at least one maximum.

34. Simplifications that do not alter critical values. The work

of finding the critical values of the variable, in the case of any

given function, may often be simplified by means of the follow-

ing self-evident principles.

1. When c is independent of x, any value of x that gives a

turning value to c<jy(x), gives a turning value to <f>(x) also; and

conversely. These two turning values are of the same or

opposite kind according as c is positive or negative.

2. Any value of x that gives a turning value to c+ <f>(x) gives

a turning value of the same kind to <f>(x) also ; and conversely.

3. When n is independent of x, any value of x that gives a

turning value to [<£(aj)] B gives a turning value to <f>(x) also;

and conversely. These turning values are of the same or

opposite kind according as ?i[<£(a,*)]n_1 is positive or negative.
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EXERCISES

Find the critical values of x in the following functions, determine

the nature of the function at each, and obtain the graph of the function.

1. M = X(x2 — 1).

2. u = 2 x3 - 15 x2 + 36 x - 4.

3. u = (x - l) 3(x - 2)
2

.

4. u = sin x + cos x.

5. u =Q-*)
3

.

a - 2x

7. u = 5 + 12 x - 3 x1 - 2 x8
.

8.
logx

X

9. m = sin2 x cos3 x.

10. ^ _ x2 - X + 1

X2 + X - 1

11. w
_(x + 3)(x+l)

(x - l)(x-2)6. w = x(x + l) 2 - 5.

12. Show that a quadratic integral function always has one maxi-

mum, or one minimum, but never both.

13. Show that a cubic integral function has in general both a

maximum and a minimum value, but may have neither.

14. Show that the function (x — b)* has neither a maximum nor

a minimum value.

35. Geometric problems in maxima and minima. The theory

of the turning values of a function has important applications

in solving problems concerning geometric maxima or minima,

i.e. the determination of the largest or the smallest value a

magnitude may have while satisfying certain stated geometric

conditions.

The first step is to express the magnitude in question

algebraically. Jf the resulting expression contains more than

one variable, the stated conditions will furnish enough relations

between these variables, so that all the others may be expressed

in terms of one. The expression to be maximized or minimized,

being thus made a function of a single variable, can be treated

by the preceding rules.
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Ex. 1. Find the largest rectangle whose perimeter is 100. Let x,

y denote the dimensions of any of the rectangles whose perimeter is

100. The expression to be maximized is the area

u = xy, (1)

in which the variables x, y are subject to the stated condition

2x + 2r/ = 100,

i.e. y =50 -x; (2)

hence the function to be maximized, expressed in terms of the single

variable x, is u _ <£(V) = ^50 -x)= 50 x - x2
. (3)

The critical value of x is found from the equation

<P(x) = 50-2x =

to be x = 25. When x increases through this value, <f>'(x) changes

sign from positive to negative, and hence <f>(x) is a maximum when

x = 25. Equation (2) shows that the corresponding value of y is 25.

Hence the maximum rectangle whose perimeter is 100 is the square

whose side is 25.

Ex. 2. If, from a square piece of tin whose side is a, a square be

cut out at each corner, find the side of the latter square in order that

the remainder may form a box of maximum

capacity, with open top.

Let x be a side of each square cut out.

Then the bottom of the box will be a square

whose side is a — 2 x, and the depth of the box

will be x. Hence the volume is

v = x(a - 2 x) 2
,

which is to be made a maximum by varying x.

Here — = (a-2i) 2 ^i(a-2z)
dx

= (a-2x)(a -6.i).

This derivative vanishes when x — -, and when x — - • It will be
2 6

found, by applying the usual test, that x = ^ gives v the minimum
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value zero, and that x = - gives it the maximum value " a
• Hence

6 27
the side of the square to be cut out is one sixth the side of the given

square.

Ex. 3. Find the area of the greatest rectangle that can be inscribed

in a given ellipse.

An inscribed rec-

tangle will evidently be

symmetric with regard

to the principal axes

of the ellipse.

Let a, b denote the

lengths of the semi-

axes OA, OB (Fig. 14)

;

let 2 x, 2 y be the dimen-Fig. 14

sions of an inscribed rectangle. Then the area is

u = 4 x?j, (1)

in which the variables x, y may be regarded as the coordinates of the

vertex P, and are therefore subject to the equation of the ellipse

2 bl
(2)

It is geometrically evident that there is some position of P for

which the inscribed rectangle is a maximum.

The elimination of y from (1), by means of (2), gives the function

of x to be maximized, 4 j}
u =— x

a
V^ (3)

By Art. 34, the critical values of x are not altered if this function

is divided by the constant — , and then squared. Hence, the values
a

of x which render u a maximum, give also a maximum value to the

function
+(x) = x*(a* - &) = aW - x*.

Here
<f>'(

x) = 2 a 2x - 4 xz = 2 x(a* - 2 x°-),

cf>"(x) =2a2 -12r2
;



MAXIMA AND MINIMA 63

hence, by the usual tests, the critical values ± — render cb(x),

V2
and therefore the area w, a maximum. The corresponding values of

y are given by (2), and the vertex P may be at any of the four points

denoted by
,

a
,

b±—:, y = ±—

,

V2 V2

giving in each case the same maximum inscribed rectangle, whose

dimensions are a V2, b V2, and whose area is 2 ab, or half that of the

circumscribed rectangle.

Ex. 4. Find the greatest cylinder that can be cut from a given

right cone, whose height is k, and the radius of whose base is a.

Let the cone be generated by

the revolution of the triangle 0^45

(Fig. 15), and the inscribed cylin-

der be generated by the revolution

of the rectangle A P.

Let A = h, AB =a, and let the

coordinates of P be (x, ?j) . Then

the function to be maximized is

Try'
2(h r- x) subject to the relation ^ = -

x h
This expression becomes

v = ^.x*a-
/i
2 v

Fig. 15

The critical value of x is f h, and V

x).

ijraVi

27

EXERCISES ON CHAPTER IV

1. What is the width of the rectangle of maximum area that can

be inscribed in a given right segment of a parabola?

..2. Divide 10 into two parts such that the sum of their squares is

a minimum.

3. Find the number that exceeds its square by the greatest pos-

sible quantity.
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>^4. What number added to its reciprocal gives the least possible

sum?

5. Given the slant height of a right cone; find its* altitude when

the volume is a maximum.

6. A rectangular piece of pasteboard 30 in. long and 14 in. wide

has a square cut out at each corner. Find the side of this square so

that the remainder may form a box of maximum contents.

7. Find the altitude of the right cylinder of greatest volume in-

scribed in a sphere of radius r.

8. Determine the greatest rectangle that can be inscribed in a

given triangle whose base is 2 b, and whose altitude is 2 a.

9. A rectangular court is to be built so as to contain a given area

c2, and a wall already constructed is available for one of its sides.

Find its dimensions so that the expense incurred in building the walls

for the other sides may be the least possible.

10. The volume of a cylinder of revolution being constant, find

the relation between its altitude and the radius of its base when the

entire surface is a minimum.

11. Assuming that the stiffness of a beam of rectangular cross

section varies directly as the breadth and as the cube of the depth, what

must be the breadth of the stiffest beam that can be cut from a

log 16 in. in diameter?

12. A man who can row 4 mi. per hour, and can walk 5 mi. per

hour, is in a boat 3 mi. from the nearest point on a straight beach,

and wishes to reach in the shortest time a place on the shore 5 mi.

from this point. Where must he land ?

13. If the cost per hour for the fuel required to run a given

steamer is proportional to the cube of her speed and is $20 an hour

for a speed of 10 knots, and if other expenses amount to $135 an hour,

find the most economical rate at which to run her over a course s.
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14. If the cost per hour of running a boat in still water is propor-

tional to the cube of the velocity, find the most economical rate at which

to run the steamer upstream against a current of a miles per hour.

15. A Norman window consists of a rectangle surmounted by a

semicircle. If the perimeter of the window is given, what must be its

proportions in order to admit as much light as possible?

16. Find the most economical proportions for a cylindrical dipper

which is to hold a pint.

17. The gate in front of a man's house is 20 yd. from the car

track. If the man walks at the rate of 4 mi. an hour and the car on

which he is coming home is running at the rate of 12 mi. an hour,

where ought he to get off in order to reach home as early as possible?

18. How much water should be poured into a cylindrical tin dip-

per in order to bring the center of gravity as low down as possible ?

[Omit until after reading Art. 164.]

19. A statue 10 ft. high stands on a pedestal that is 50 ft. high.

How far ought a man whose eyes are 5 ft. above the ground to stand

from the pedestal in order that the statue may subtend the greatest

possible angle?

20. The sum of the surfaces of a sphere and a cube is given. How
do their dimensions compare when the sum of their volumes is a

minimum ?

21. An electric light is to be placed directly over the center of a

circular plot of grass 100 ft. in diameter. Assuming that the inten-

sity of light varies directly as the sine of the angle under which it

strikes an illuminated surface and inversely as the square of its dis-

tance from the surface, how high should the light be hung in order

that the most light possible shall fall on a walk along the circumfer-

ence of the plot ?

22. Find the relation between length of circular arc and radius, in

order that the area of a circular sector of a given perimeter shall be a

maximum.

el. calc. — 5
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23. On the line joining the centers of two mutually external

spheres of radii r, R, find the distance of the point from the center of

the first sphere from which the maximum of spherical surface is visible.

24. The radius of a circular piece of paper is r. Find the arc of

the sector which must be cut from it so that the remaining sector

may form the convex surface of a cone of maximum volume.

25. Describe a circle with its center on a given circle so that the

length of the arc intercepted within the given circle shall be a maxi-

mum.

26. Through a given point within an angle draw a straight line

which shall cut off a minimum triangle.

,27. What is the length of the axis, and the area, of the maximum

parabola which can be cut from a given right circular cone, given

that the area of the parabola is equal to two thirds of the product of

its base and altitude? A parabola is cut from the cone by a plane

parallel to an element.

28. Through the point (a, b) a line is drawn such that the part

intercepted between the rectangular coordinate axes is a minimum.

Find its length.

29. The lower corner of a leaf, whose edge is a, is folded over so

as just to reach the inner edge of the page. Find the width of the

part folded over when the length of the crease is a minimum.

30. What is the length of the shortest line that can be drawn tan-

gent to the ellipse b2x2 + a 2
y
2 = a2b2 and having its ends on the co-

ordinate axes ?

31. Given a point on the axis of the parabola y
2 = 2 px at a dis-

tance a from the vertex. Find the abscissa of the point of the curve

nearest to it.

32. A wall 6 ft. high is parallel to the front of a house and 8 ft.

from it. Find the length of the shortest ladder that will reach the

house if one end rests on the ground outside the wall.
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33. It is required to construct from two circular iron plates of

radius a a buoy, composed of two equal cones having a common base,

which shall have the greatest possible volume. Find the radius of

the base.

34. A weight W is to be raised by means of a lever with force F
at one end and the point of support at the other. If the weight is

suspended from a point at a distance a from the point of support, and

the weight of the beam is w pounds per linear foot, what should be

the length of the lever in order that the force required to lift the

weight shall be a minimum?

35. A load is hauled up an inclined plane by a horizontal force ; it

is required to find the inclination of the plane so that the mechanical

efficiency may be greatest, assuming that the efficiency 77 is defined by

the formula tan Q
' tan(0+4>)'

where
<f>

is the angle of friction; i.e. tan
<f>
— fi, the coefficient of fric-

tion between the load and the plane.

36. If the plane is of cast iron and the load is steel, and if the

coefficient of friction between these substances is fi = 0.347, at what

angle is the efficiency of the inclined plane a maximum?

37. Prove that a conical tent of given capacity will require the

least amount of canvas when the height is v2 times the radius of

the base.

38. If given currents c and c' produce deflections a and a' in a

tangent galvanometer, so that tan «/tan «' = c/c', show that a — a' is

a maximum when a + a' = -.



CHAPTER V

RATES AND DIFFERENTIALS

36. Rates. Time as independent variable. Suppose a particle

P is moving in any path, straight or curved, and let s be the

number of space units passed over in t seconds. Then s may

be taken as the dependent variable, and t as the independent

variable. The motion of P is said to be uniform when equal

spaces are passed over in equal times. The number of space

units passed over in one second is called the velocity of P,

The velocity v is thus connected with the space s and the time

t by the formula s
v — -.

t

The motion of P is said to be non-uniform when equal spaces

are not passed over in equal times. If s is the number of space

units passed over in t seconds, then the average velocity during

these t seconds is denned as -. If during the time A£ the num-

ber of space units As are described, then the average velocity

As
during the time A£ is — . The actual velocity of P at any in-

stant of time t is the limit which the average velocity

approaches as At is made to approach zero as a limit.

rr, lim As ds
Thus v = A , . n— = —

A* = °A* dt

is the actual velocity of P at the time denoted by t. It is

evidently the number of space units that would be passed over

68
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in the next second if the velocity remained uniform from the

time t to the time t -f 1.

It may be observed that if the more general term, " rate

of change,'' is substituted for the word " velocity," the above

statements will apply to any quantity that varies with the

time, whether it be length, volume, strength of current, or any

other function of the time. For instance, let the quantity of

an electric current be C at the time t, and C -\- AC at the time

t + At. Then the average rate of change of current in the in-

terval At is — ; this is the average increase in current-units
At

per second. And the actual rate of change at the instant de-

noted by t is k rt jnJ
lim AC dC
te±° At~ dt'

This is the number of current-units that would be gained in

the next second if the rate of gain were uniform from the time

t to the time t + 1. Since, by Art. 8,

dy_dy. dx

dx dt dt

hence -^ measures the ratio of the rates of change of y and
dx

oi x.

It follows that the result of differentiating

2/=/(*) (1)

may be written in either of the forms

*-m (2)

*-/«! (3)
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The latter form is often convenient, and may also be obtained

directly from (1) by differentiating both sides with regard to

t. It may be read: the rate of change of y is f(x) times the

rate of change of x.

Ketnrning to the illustration of a moving point P, let its

dx
coordinates at time t be x and y. Then measures the rate

dt
of change of the ^-coordinate.

Since velocity has been defined as the rate at which a point

is moving, the rate —may be called the velocity which the
dt

point P has in the direction of the a>axis, or, more briefly, the

^-component of the velocity of P.

It was shown on p. 68 that the actual velocity at any instant

t is equal to the space that woiild be passed over in a unit of

time, provided the velocity were

*lrt\B / c^r&- uniform during that unit. Ac-

cordingly, the ^-component of

dt velocity — may be represented

by the distance PA (Fig. 16)

which P would pass over in the

direction of the a>axis during a

unit of time if the velocity remained uniform.

Similarly -# is the ^/-component of the velocity of P, and

may be represented by the distance PB.

The velocity — of P along the curve can be represented by
Civ

the distance PC, measured on the tangent line to the curve at

P. It is evident from the parallelogram of velocities that PC
is the diagonal of the rectangle PA, PB.

^.dx

Fig. 16
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Since PC2 = PA2 + PB2
, it follows that

S)'=(f)"
+ (*)' «

Ex. 1. If a point describes the straight Hue 3 x + 4y = 5, and if x

increases h units per second, find the rates of increase of y and of s.

Since y = £ - £ x,

hence -7-— — 7-r"
rf< 4 eft

When — = A,
dt

it follows that^= - f A, ^ = VW^TJ^i - 5 A<

eft </£

Ex. Si. A point describes the parabola #
2 = 12 r in such a way that

when x = 3 the abscissa is increasing at the rate of 2 ft. per second

;

at what rate is y then increasing? Find also the rate of increase of s.

Since y*=12*,

then
"(It '" dt

dy Qdx 6. dx

,

dt y dt Vl2x dt
'

hence when x = 3 and — = 2, it follows that ^ = ± 2.

A^- (D
2

= (fT + B) '
•-- |=^ft. per second.

Ex. 3. A person is walking toward the foot of a tower on a hori-

zontal plane at the rate of 5 mi. per hour. At what rate is he ap-

proaching the top, which is 60 ft. high, when he is 80 ft. from the

bottom ?
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Let x be the distance from the foot of the tower at time t, and y

the distance from the top at the same time. Then

x2 + 602 = if,

and *** =«&
dt -dt

When x is 80 ft., y is 100 ft.; hence if — is 5 mi. per hour,
dy A • ,

dt
-^ is 4 mi. per hour.
dt

k

37. Abbreviated notation for rates. When, as in the above

examples, a time derivative is a factor of each member of an

equation, it is usually convenient to write, instead of the

symbols — , -^, the abbreviations dx and dy, for the rates ofJ
dt dt

J '

change of the variables x and y. Thus the result of differen-

tiatillg y=m (l)

may be written in either of the forms

*-/«, (2)

dt '
}
dt'

w
dy=f'(x)dx. (4)

It is to be observed that the last form is not to be regarded

as derived from equation (2) by separation of the symbols, dy,

dx\ for the derivative -M- has been defined as the result of
dx

performing upon y an indicated operation represented by the

symbol — , and thus the dy and dx of the symbol -M- have
dx dx

been given no separate meaning. The dy and dx of equation

(4) stand for the rates, or time derivatives, ~ and •-— occur-
dt - dt
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ring in (3), while the latter equation is itself obtained from

(1) by differentiation with regard to t, by Art. 8.

In case the dependence of y upon x is not indicated by a

functional operation/, equations (3), (4) take the form

dy dy dx

dt dx dt

'

dy =-fax.
dx

In the abbreviated notation, equation (4) of the last article

is written (ds) 2 — (dx) 2
-f (dy) 2 or ds2 = dx2 + dy2

.

Ex. 1. A point describing the parabola y
2 — 2 px is moving at the

time t with a velocity of v ft. per second. Find the rate of increase

of the coordinates x and y at the same instant.

Differentiating the given equation with regard to t, we obtain

ydy = pdx.

But dx, dy also satisfy the relation

dx2 + dy2 = v2
;

hence, by solving these simultaneous equations, we obtain

dx = — '

v, dy = ^
v, in feet per second.

vV + p 2 Vy*2 + p 2

Ex. 2. A vertical wheel of radius 10 ft. is making 5 revolutions per

second about a fixed axis. Find the horizontal and vertical velocities

of a point on the circumference situated 30° from the horizontal.

Since x = 10 cos 6, y = 10 sin 6,

then dx = -10 sin OdO, dy = 10 cos Odd.

But dO = 10 7T = 31.416 radians per second,

hence dx = — 314.16 sin $ = — 157.08 ft. per second,

and dy = 314.16 cos = 272.06 ft. per second.

Ex. 3. Trace the changes in the horizontal and vertical velocity

in a complete revolution.



74 DIFFERENTIAL CALCULUS

38. Differentials often substituted for rates. The symbols dx,

dy have been denned above as the rates of change of x and y

per second.

Sometimes, however, they may conveniently be allowed to

stand for any two numbers, large or small, that are propor-

tional to- these rates ; the equations, being homogeneous in

them, will not be affected. It is usual in such cases to speak

of the numbers dx and dy by the more general name of differ-

entials ; they may then be either the rates themselves, or any

two numbers in the same ratio.

This will be especially convenient in problems in which the

time variable is not explicitly mentioned.

39. Theorem of mean value. Let f(x) be a continuous func-

tion of x which has a derivative. It can then be represented

by the ordinates of a curve whose

equation is y —f(x).

In Pig. 17, let

x = ON, x+ h = OR,

f(x) = NH, f(x + h) = RK.

Then f(x + li)-f(x) = MK, and

f(x+iC\-f(xS MK
Fig. 17

= ^±± = tan MHK.
h HM

But at some point 8 between H and A" the tangent to the

curve is parallel to the secant IIK. Since the abscissa of S is

greater than x and less than x + h it may be represented by

x-\-0h, in which 6 is a positive number less than unity. The

slope of the tangent at S is then expressed by/'(.x* + 6h), hence

f(x + h) -f(x) =/{x + m)t

from which f(x + h)=f(x)+hf'(x+Oh).
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The theorem expressed by this formula is known as the

theorem of mean value.

If in this equation we put

f(x + K)—f (a?) = dy, h = dx,

in which h is an arbitrary increment, then the relation between

the increment of the variable and the actual increment of the

function will be expressed by the equation

dy=f'(x + 6dx)dx,

whereas if dy, dx are regarded as differentials (dy not an

actual but a virtual increment), then the relation becomes

dy=f\x)dx.

This more clearly illustrates that the differential dy is de-

fined as the change that would take place in the function y,

corresponding to the actual change dx in the independent vari-

able x
}
provided the rate of change remained constant.

EXERCISES

1. When x increases from 45° to 45° 15', find the increase of

logio sin x, assuming that the ratio of the rates of change of the func-

tion and the variable remains constant throughout the short interval.

Here dy = logio e • cot xdx = .4343 cot xdx = .4343 dx.

Let dx— .004163 (the number of radians in 15').

Then dy = .001895,

which is the approximate increment of logio sin x.

But log10 sin 45° = - \ log 2 = - .150515,

therefore log10 sin 45° 15' = - .148620.

2. Show that log,
ft

.r increases more slowly than x, when

x > log
10

e, that is, x > 0.4343.
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3. A man is walking at the rate of 5 mi. per hour towards the

foot of a tower 60 ft. high standing on a horizontal plane. At what

rate is the angle of elevation of the top changing when he is 80 ft. from

the foot of the tower ?

4. An arc light is hung 12 ft. directly above a straight horizontal

walk on which a man 5 ft. in height is walking. How fast is the man's

shadow lengthening when he is walking awTay from the light at the

rate of 168 ft. per minute?

5. At what point on the ellipse 16 x2 + 9 y
2 — 400 does y decrease

at the same rate that x increases?

6. A vessel is sailing northwest at the rate of 10 mi. per hour.

At what rate is she making north latitude?

7. In the parabola y
2 = 12 x, find the point at which the ordinate

and abscissa are increasing equally.

8. At what part of the first quadrant does the angle increase twice

as fast as its sine ?

9. Find the rate of change in the area of a square when the side

b is increasing at a ft. per second.

10. In the function y = 2 xz + 6, what is the value of x at the point

where y increases 24 times as fast as x ?

11. A circular plate of metal expands by heat so that its diam-

eter increases uniformly at the rate of 2 in. per second. At what rate

is the surface increasing when the diameter is 5 in.?

12. What is the value of x at the point at which x8 — 5 x'
2 + 17 x and

xs — 3 x change at the same rate ?

13. Find the points at which the rate of change of the ordinate

y = x3 - 6 x2 + 3 x + 5 is equal to the rate of change of the slope of the

tangent to the curve.

14. The relation between s, the space through which a body falls,
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and t, the time of falling, is s = 16 t
2

. Show that the velocity is equal

to 32 t.

The rate of change of velocity is called acceleration and is denoted

by a.

TT dv d2s
Hence a = — = -—

•

dt dt2

Show that the acceleration of the falling body is a constant.

15. A body moves according to the law s — cos (nt + e). Show that

its acceleration is proportional to the space through which it has

moved.

16. If a body is projected upwards in a vacuum with an initial

velocity v , to what height will it rise, and what will be the time

of ascent?

17. A body is projected upwards with a velocity of a ft. per second.

After what time will it return?

18. If A is the area of a circle of radius x, show that the circum-

dA
ference is — . Interpret this fact geometrically.

19. A point describing the circle x2 + y
2 = 25 passes through (3,4)

with a velocity of 20 ft. per second. Find its component velocities

parallel to the axes.

20. Let a point P move with uniform velocity on a circle of radius

a with center ; let AB be any diameter, and Q the orthogonal projec-

tion of P on AB. Find an expression for the velocity of Q in terms

of the angular velocity of P, and show how this velocity varies during

a revolution of P. The motion of the point Q along AB is called

harmonic.

21. A point P moves along the curve y = xz at the rate of 3 ft. per

second. At what rate is the angle <£, which the tangent to the curve

makes with the x-axis, increasing when P is passing through the

point (1, 1)?



V
CHAPTER VI

DIFFERENTIAL OF AN AREA, ARC, VOLUME, AND
SURFACE OF REVOLUTION

40. Differential of an area. If the coordinates of P are (x, y)

and those of Q (x 4- Ax, y-\- Ay), then

MN= PR = Ax, and PS = RQ=Ay.
If the area OAPM is denoted by A,

then A is evidently some function

of the abscissae; also if area OAQN
is denoted by A 4- AA then the

area MNQP is AA ; it is the incre-

ment taken by the function A, when

x takes the increment Ax. But MNQP lies between the

rectangles MR, MQ ;
hence

i/Aa; < A.4 < (y + Ay)Aa;,

and
A.4y<—-<y + ^y-
Ax

Therefore, when Ax, Ay, AA all approach zero,

lim
AA dA
Ax (lx

= ?/

Hence, if the ordinate and the area are expressed each as a

function of the abscissa, the derivative of the area function

with regard to the abscissa is equal to the ordinate function.

78
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In the notation of differentials we may say : The differential

of the area between a curve and the axis of x is measured by the

product of the ordinate and the differential of x.

dA = ydx.

Ex. If the area included between a curve, the axis of x, and the

ordinate whose abscissa is a:, is given by the equation

A = xs
,

find the equation of the curve.

Here =M = 3z2.
dx

41. Differential of an arc. A segment of a straight line is

measured by applying the unit of measure successively to the

segment to be measured. In the case of a curve this is gen-

erally impossible. We define the length of a given curve

between two points upon it as the limit of the sum of the

chords joining points on the curve when the lengths of these

chords approach the limit zero. We shall then assume that the

ratio of the arc to the chord approaches the limit 1 when the

length of the chord approaches the limit zero. [Compare § 19.]

Let PQ be two points on the curve (Fig. 19) ; let x, y be the

coordinates of P ; x + Ax, y + Ay Y
those of Q ; s the length of the arc

AP; s -+- As that of the arc AQ.

Draw the ordinates MP, NQ ; and

draw PR parallel to MN. Then

PR = Ax, RQ = Ay ; arc PQ = As. -

Hence chord PQ= V(A xf+ (Ay) 2
,

M N
Fig. 19

PQ
Ax

Therefore ' =Ai

Ax
As

1>Q

AXy

PQ = As

Ax PQ
A?/Y

vi+is-
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Taking the limit of both members as Ax approaches zero

lim As
and putting ™

Q
-~ = 1, we obtain

%-Mif (1)

Si,u„„ly , |-V' +(*/. (2)

Moreover, from Art. 36,

(ds\*/dx\* (dy\*

[dtj \dtj \dtj'
(3)

or in the differential notation,

ds2 = dx2
-f dy

2
. W

42. Trigonometric meaning of — , —

.

doc dy

cs- A.r A.r PQ »r>/^Since — = • —-3S = cos PPQ
As PQ As As'

it follows by taking the limit that

dx ,— = cos <£,
ds

wherein
<f>,

being the limit of the angle RPQ, is the angle

which the tangent at the point (x, y) makes with the o-axis.

Similarly, -* = sin </> ; whence — = sec <£, — = esc <£.

ds dx dy

By using the idea of a rate or

differential, all these relations may

be conveniently exhibited by Fig.

20.

These results may also be de-

rived from equations (1), (2) of

Art. 41, by putting -'^tan d>.

Fig. 20 J F dx

* .»

QL^dx
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43. Differential of the volume of a solid of revolution. Let

the curve APQ (Fig. 21) revolve about the x-axis, and thus

generate a surface of revo-

lution ; let V be the volume in-

cluded between this surface,

the plane generated by the

fixed ordinate at A, and the

plane generated by any ordinate

MP.

Let AV be the volume gener-

ated by the area PMNQ. Then AV lies between the vol-

umes of the cylinders generated by the rectangles PMNR
and SMNQ) that is,

Try
9Ax < AV< 7T (y -f Ay)

2Ax.

Y

s

A

/R

X
M AJ

Fig. 21

Dividing by Ax and taking limits, we obtain

dV
dx

Try
2
, dV= 7ry

2dx.

44. Differential of a surface of revolution. Let S be the area

of the surface generated by the arc AP (Fig. 22), and AS that

generated by the arc PQ, whose length is As.

Draw PQ', QP parallel to OX
and equal in length to the arc PQ.

Then it may be assumed as an

axiom that the area generated by

PQ lies between the areas gen-

iL erated by PQ' and P'Q; i.e.

2 iryAs < AS < 2 tv (y + Ay) As.

I

M N
Fig. 22

EL. CALC.—
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Dividing by As and passing to the limit,

f =2^ (1)

dx ds dx \ \dx)

45. Differential of arc in polar coordinates. Let p, 6 be the

coordinates of P (Fig. 23) ; p + Ap, 6 + A6 those of $ ; s the

length of the arc KP ;
As that of the

L arcPQ; draw PM perpendicular to

OQ. Then

PM= p sin A0,
p

MQ =OQ-OM=p + AP -p cos A<9

= p (1 — cos A0) + A/a

Fig. 23 = 2 P sin2 i A# +V
Hence PQ2 = (p sin A0) 2 + (2 p sin2

1 A0 + Ap) 2
,

/PQV = ^sinA^V + (p sin J A0 .

SAi^ + V)\

Replacing the first member by f
—

-

% • -^ ] ,
passing to the

\ .AN -Af7 /

limit when A0 = 0, and putting lira—^ = 1, lira — — = 1,
As A9

lira
sin * A6 = 1, we obtain

i^0
^V = ,

2 + ^Y.

that is, ^ = V^ +/
d<9

' Vd0y
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In the rate or differential notation this formula may be

conveniently written ^ = rf
* + 2^

46. Differential of area in polar coordinates. Let A be the

area of OKP (Fig. 24) measured from a fixed radius vector

OK to any other radius vec-

tor OP ; let A^4 be the area of

OPQ. Draw arcs PM, QN,

with as a center. Then the

area POQ lies between the

areas of the sectors OPM and

ONQ; i.e. Fig. 24

1 p
2A0 < A.-l < J (p + Ap) 2A0.

Dividing by A0 and passing to the limit, when A0 = 0, we

obtain dA
d$
= ip

2
-

Hence, in the differential notation we may write the formula

dA= \ phlO.

EXERCISES ON CHAPTER VI

1. In the parabola y
2 = 4 ax, find — , — ,

—- ,

dx dx dx dx

2. Find — and — for the circle x2 + y
2 = a2

.

dx dy

ds
3. Find — for the curve ev cos x = 1.

dx

4. Find the x-derivative of the volume of the cone generated by

revolving the line y = ax about the axis of x.

5. Find the it-derivative of the volume of the ellipsoid of revolu-

tion, formed bv revolving — + •*- = 1 about its major axis.
a2 b2
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ds
6. In the curve p = a9 find —

du

7. Given p = a (1 + cos 6) ; find ^
8. In p

2 cos 2 0, find ^.

9. The parabolic arc y
2 = 9 x measured from the vertex to a variable

point P = (x, y) is revolving about the a>axis. If P moves along the

curve at the rate of 2 in. per second, what is the rate of increase

of the surface of revolution when P is passing through the point

(4, 6)? What is the rate of increase of the volume of revolution?

10. The radius vector to the cardioid p = 2 (1 — cos $) is rotating

about the origin with an angular velocity of 18° per second. Find

the rate at which the extremity P of the radius vector is moving along

the curve, taking the inch as unit of length. At what points of the

curve will P be moving fastest? slowest? Find the velocities at

these points.



CHAPTER VII

APPLICATIONS TO CURVE TRACING

47. Equation of tangent and normal. The function y=f(x)

may be represented by a plane ciu-ve. It will now be shown

how to obtain several of the properties of this curve by means

of the principles already established. The tangent line at a

point (x-t, y{) on the curve passes through the point and has

the slope — , the symbol meaning that the coordinates x
x , y x

are substituted in the first derivative after the differentiation

has been performed. Its equation may be written in the form

y- 2/1 = ^' (*-*.)• (1)

The normal to the curve at the point (xu yY) is the straight

line through this point, perpendicular to the tangent. Since

the slope of the normal is the negative reciprocal of that of

the tangent, its equation may be written in the form

*-*i + p(*- *)-0. (2)

48. Length of tangent, normal, subtangent, subnormal. The

segments of the tangent and normal intercepted between the

point of tangency and the axis OX are called, respectively,

the tangent length and the normal length, and their projections

on OX are called the subtangent and the subnormal.

85
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C

Fig. 25 a Fig. 25 6

Thus, in Fig. 25, a, b let the tangent and normal to the curvePC
at P meet the axis OX in T and N, and let i/P be the ordi-

nate of P. Then TP is the tangent length,

PNthe normal length,

TM the subtangent,

MN the subnormal.

These will be denoted, respectively, by t, n, r, v.

Let the angle XTP be denoted by cf>, and write tan
<f>
= -^*.

"

Then

hence

d^x

2/i

1 +
(for,

yH§,
fdjh

\dx
x

The subtangent is measured from the intersection of the

tangent to the foot of the ordinate ; it is therefore positive

when the foot of the ordinate is to the right of the intersec-

tion of tangent. The subnormal is measured from the foot

of the ordinate to the intersection of normal, and is positive

when the normal cuts OX to the right of the foot of the ordi-
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nate. Both are therefore positive or negative, according as

<£ is acute or obtuse.

The expressions for t, v may be obtained also by finding

from equations (1), (2), Art. 47, the intercepts made by the

tangent and normal on the axis OX. The intercept of the

tangent subtracted from x
l
gives t, and x

x
subtracted from

the intercept of the normal gives v.

Ex. Find the intercepts made upon the axes by the tangent at the

point (xv y x) on the curve Va: + Vy = Va, and show that their sum

is constant.

Differentiating the equation of the curve, we obtain

2 V* 2V~ydx

Hence the equation of the tangent is

x
i

The x intercept is x
l
+ y/x

lyv and the y intercept is yx
4- y/x

lyv

hence their sum is , ,— ,—N0

If a series of lines is drawn such that the sum of the intercepts of

each is the same constant, account being taken of the signs, the form

of the parabola to which they are all tangent can be readily seen.

EXERCISES

1. Find the equations of the tangent and the normal to the ellipse

X 2 V2

(- V- — 1 at the point (xv ?/,). Compare the process with that era-
a'2 b2

i

ployed irr-analytic geometry to obtain the same results.

2. Find the equation of the tangent to the curve

x\x +y)= a2(x -y)
at the origin.
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3. Find the equations of the tangent and normal at tho point

(1, 3) on the curve y'2 = 9 x3
.

4. Find the equations of the tangent and normal to each of the

following curves at the point indicated :

(a) y = — , at the point for which x = 2 a.
4 a2 + x 2

(jg) y
2 = 2 x2 — x3

, at the points for which x = 1.

(y) y
2 ~ ipx, at the point (p, 2p).

5. Find the value of the subtangent of y
2 = 3 x2 — 12 at x = 4.

Compare the process with that given in analytic geometry.

6. Find the length of the tangent to the curve y
2 = 2 x at x = 8.

7. Find the points at which the tangent is parallel to the axis

of x, and at which it is perpendicular to that axis for each of the fol-

lowing curves :

(ft) a,? + 2 hxy + bf = 1.

(/J) , =?^iL\
ax

(y) y
3 = x2(2 a — x).

8. Find the condition that the conies

ax2 4- by2 = 1, a'x2
-f b'y2 — 1

shall cut at right angles.

9. Find the angle at which x2 = y
2 + 5 intersects 8 x2

-f 18 y
2 = 144.

Compare with Ex. 8.

10. Show that in the equilateral hyperbola 2 xy — a2 the area of

the triangle formed by a variable tangent and the coordinate axes is

constant and equal to a2
.

11. At what angle does y
2 = 8 x intersect 4 x2 + 2 y

2 =48 ?

12. Determine the subnormal to the curve y
n — aP-^x.

13. Find the values of x for which the tangent to the curve

7/3 = (x - a )
2 (x - c)

is parallel to the axis of x.
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14. Show that the subtangent of the hyperbola xy = a2 is equal to

the abscissa of the point of tangency, but opposite in sign.

15. Prove that the parabola y
2 = 4 ax has a constant subnormal.

16. Show analytically that in the curve x2 + y
2 = a2 the length of

the normal is constant.

17. Show that in the tractrix, the length of the tangent is con-

stant, the equation of the tractrix being

x = Vc*-Tj* + £ log
c-Vc2 -y\

- c + vV2 — y
2

X

18. Show that the exponential curve y = ae c has a constant sub-

tangent.

19. Find the point on the parabola y
2 = 4 px at which the angle

between the tangent and the line joining the point to the vertex shall

be a maximum.

49. Concavity upward and downward. A curve is said to be

concave downward in the vicinity of a point P when, for a

finite distance on each side of P, the curve is situated below

the tangent drawn at that point, as in the arcs AD, FTL It

is concave upward when the curve lies above the tangent, as

in the arcs DF, HK.
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By drawing successive tangents to the curve, as in the fig-

ure, we easily see that if the point of contact advances to the

right, the tangent swings in the positive direction of rotation

when the concavity is upward, and in the negative direction

when the concavity is downward. Hence upward concavity

may be called a positive bending of the curve, and downward

concavity, a negative bending.

A point at which the direction of bending changes con-

tinuously from positive to negative, or vice versa, as at F or

at D, is called a point of inflexion, and the tangent at such a

point is called a stationary tangent.

The points of the curve that are situated just before and just

after the point of inflexion are thus on opposite sides of the

stationary tangent, and hence the tangent crosses the curve, as

at D, F, H.

50. Algebraic test for positive and negative bending. Let the

inclination of the tangent line, measured from the positive end

of the ^axis toward the forward end of the tangent, be denoted

by <£. Then <£ is an increasing or decreasing function of the

abscissa according as the bending is positive or negative ; for

instance, in the arc AD, the angle
<f>

diminishes from 4- —
Z

through zero to — - ; in the arc DF, cfy increases from — -
4 4

through zero to - ; in the arc FIT, <£ decreases from -f - through
o o

zero to — y ; and in the arc HK,
<f>

increases from — y through

zero to + -.

At a point of inflexion $ has evidently a turning value which

is a maximum or a minimum, according as the concavity changes

from upward to downward, or conversely.
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Thus in Fig. 26, cf> is a maximum at F, and a minimum at D
and at II.

Instead of recording the variation of the angle
<f>,

it is gen-

erally convenient to consider the variation of the slope, tan <£,

which is easily expressed as a function of x by the equation

tan <£ = -^.

dx

Since tan
<f>

is always an increasing function of
<f>,

it follows

that the slope function -^ is an increasing or a decreasing
dx

function of x, according as the concavity is upward or down-

ward, and hence that its x-derivative is positive or negative.

Thus the bending of the curve is in the positive or negative

d-y
direction of rotation, according as the function —^ is positive

dx-
or negative.

At a point of inflexion the slope — is a maximum or a
dx

d2v
minimum, and therefore its derivative —- changes sign from

dx2

positive to negative or from negative to positive. This latter

condition is evidently both necessary and sufficient in order that

the point (x, y) may be a point of inflexion on the given curve.

Hence, the coordinates of the points of inflexion on the curve

may be found by solving the equations

/"O) = o, /"(*)=«,,

and then testing whether f"(x) changes its sign as x passes

through the critical values thus obtained. To any critical

value a that satisfies the test corresponds the point of inflexion
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Ex. 1. For the curve y = (x2 — l) 2

find the points of inflexion, and show the mode of variation of the

slope and of the ordinate.

Here ^/ = 4a-(>2 -l),
dx

(Py_
dx2

= 4(3:r2 -l),

1
hence the critical values for inflexions are x = ±

—

-. It will be seen

i
vs

that as x increases through = , the second derivative changes sign
V3

from positive to negative, hence there is an inflexion at which

the concavity changes from upward to downward. Similarly, at

x = ^—=3 the concavitv changes from downward to upward. The
V3

following numerical table will help to show the mode of variation of

the ordinate and of the slope, and the direction of bending.

As x increases from — oo to

= the bending is positive, and
Va

the slope continually increases from

— go through zero to a maximum
I Q

value —— , which is the slope of

3V3
the stationary tangent drawn at

the point
f ,

- ).

V V3 9/

As x continues to increase from

L_ to H =, the bending is neg-

V3 V3
Q

ative, and the slope decreases from + —- through zero to a minimum
oV3

o

value _, which is the slope of the stationary tangent at

3V<3

X y
dy

dx

d*y

dx2

— 00 + co — GO +
_ 2 + 9 -24 +
-1 +

V3 -1
8

3V3
1 _

V3 H
8

3V3
1 +

+ CO + 00 + GO +

^tl
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Finally, as x increases from -\ to + oo, the bending is positive

V3
and the slope increases from the

o

value through zero to + oo.

3V3
The values x = — 1, 0, +1, at

which the slope passes through zero,

correspond to turning values of the

ordinate.

Ex. 2. Examine for inflexions

the curve
x + 4 = (y - 2) 3

.

V

J

Fig. 27

In this case

y = 2+(x + 4)\

dy 1

dx

d2
y

(x + 4)"

dx2
+ 4)

dy

Fig. 28

Hence, at the point ( - 4, 2),
d̂x

and —¥ are infinite. When x< - 4,
dx'2

d2u d2v—± is positive, and when x > — 4, —^ is negative.
dx2 dx2

Thus there is a point of inflexion at (— 4, 2), at which the slope

is infinite, and the bending changes from the positive to the negative

direction.

Ex. 3. Consider the curve

dy _
dx

4 a:
8
,

y = ar

d2
y

dx2
12 x2

.

d2
yAt (0, 0), ^ is zero, but the

dx2

curve has no inflexion, for —&
dx2

never changes sign (Fig. 29). Fig. 29
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51. Concavity and convexity toward the axis. A curve is

said to be convex or concave toward a line, in the vicinity of

a given point on the curve, according as the tangent at the

point does or does not lie between the curve and the line, for

a finite distance on each side of the point of contact.

Fig. 30 a Fig. 30 6

First, let the curve be convex toward the #-axis, as in the left-

hand figure. Then if y is positive, the bending is positive

cl
2v

and —" is positive : but if y is negative, the bending is nega-
dx2

tive and —^ is negative. Hence in either case the product
dx2

sin
dx2

y—^- is positive.

Next, let the curve be concave toward the a>axis, as in the

right-hand figure. Then if y is positive, the bending is nega-

tive and —^- is negative ; but if y is negative, the bending is

dx2

positive and —-^ is positive. Thus in either case the product
dx2

d2
v

y—-- is negative. Hence :

dx2

In the vicinity of a given point (x, y) the curve is convex or

concave to the x-axis. according as the product y —^ is positive or
dx2
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EXERCISES

1. Examine the curve y — 2 — 3(x — 2) 5 for points of inflexion.

2. Show that the curve a2y = x(a 2 — x2
) has a point of inflexion

at the origin.

3. Find the points of inflexion on the curve y
x2 + 4 a2

m
4. In the curve ay = x«, prove that the origin is a point of in-

flexion if m and n are positive odd integers.

5. Show that the curve y = c sin - has an infinite number of
a

points of inflexion lying on a straight line.

6. Show that the curve y(x2
-f- a 2

) = x has three points of inflexion

lying on a straight line ; find the equation of the line.

7. If y
2 =f(x

s

) is the equation of a curve, prove that the abscissas

of its points of inflexion satisfy the equation

[/'(*)]
2 = 2/(z) •/''(*).

8. Draw the part of the curve a'2y = ~— ax2
-f 2 a 3 near its point

o

of inflexion, and find the equation of the stationary tangent.

9. Show that the curve y = x2n has no points of inflexion, n being

any positive integer. Sketch the curve.

10. Show that the curve (1 + x2
)y =1 — x has three points of in-

flexion, and that they lie in a straight line.

52. Hyperbolic and parabolic branches. When a curve has a

branch extending to infinity, the tangents drawn at successive

points of this branch may tend to coincide with a definite fixed

line, as in the familiar case of the hyperbola. On the other

hand, the successive tangents may move farther and farther out

of the field, as in the case of the parabola. These two kinds

of infinite branches may be called hyperbolic and parabolic.

The character of each of the infinite branches of a curve can

always be determined when the equation of the curve is known.
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53. Definition of a rectilinear asymptote. If the tangents at

successive points of a curve approach a fixed straight line as

a limiting position when the point of contact moves farther

and farther along any infinite branch of the given curve, then

the fixed line is called an asymptote of the curve.

This definition may be stated more briefly but less precisely

as follows : An asymptote to a curve is a tangent whose point

of contact is at infinity, but which is not itself entirely at

infinity.

DETERMINATION OF ASYMPTOTES

54. Method of limiting intercepts. The equation of the tan-

gent at any point (x
1} yx) being

y-yi = ~(^-^i),
ClXi

the intercepts made by this line on the coordinate axes are

dxl
Xq — x

x
— yx

—
dyx J

(1)

Suppose the curve has a branch on which x == oo and y = oo

.

Then from (1) the limits can be found to which the intercepts

x
, y approach as the coordinates x

lf yx
of the point of contact

tend to become infinite. If these limits are denoted by a, b,

the equation of the corresponding asymptote is

a b

Except in special cases this method is usually too compli-'

cated to be of practical use in determining the equations

of the asymptotes of a given curve. There are two other

methods, which together will always suffice to determine the
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asymptotes of curves whose equations involve only algebraic

functions. These may be called the methods of inspection

and of substitution.

55. Method of inspection. Infinite ordinates, asymptotes parallel

to axes. When an algebraic equation in two coordinates x and

y is rationalized, cleared of fractions, and arranged according

to powers of one of the coordinates, say y, it takes the form

a^+(6aj + c)r-1 +(^ + ^+/)r" 2+ - +«»-#+ «»= <>,

in which un is a polynomial of the degree n in terms of the

other coordinate x, and un . l is of degree n — 1.

When any value is given to x, the equation determines n

values for y.

Let it be required to find for what value of x the correspond-

ing ordinate y has an infinite value.

For this purpose the following theorem from algebra will

be recalled

:

Given an algebraic equation of degree n,

ayn + (3y
n-1 + yy

n - 2 + ••• =0;

if « = 0,one root y becomes infinite; if a = and /? = 0, two

roots y become infinite; and in general if the coefficients of

each of the k highest powers of y vanish, the equation will

have k infinite roots.

Suppose at first that the term in y
n
is present ; in other

words, that the coefficient a is not zero. Then, when any

finite value is given to x, all of the n values of y are finite,

and there are accordingly no infinite ordinates for finite

values of the abscissa.

Next suppose that a is zero, and b, c, not zero. In this

case one value of y is infinite for every finite value of x, and

el. calc.— 7
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hence the curve passes through the point at infinity on the

y axis.

There is one particular value of x, namely, x = ^—. for
b

which an additional root of the equation in y becomes infinite.

For, when x has this value, the coefficient bx -f- c of the high-

est power of y remaining in the equation vanishes.

Geometrically, every line parallel to the y axis has one

point of intersection with the curve at infinity, but the line

bx-\-c = has two points of intersection with the curve at

infinity. A line having two coincident points of intersection

with a curve is a tangent to the curve ; and when the coinci-

dent points are at infinity, but the line itself not altogether at

infinity, the tangent is an asymptote. Hence, an ordinate that

becomes infinite for a definite value of x is an asymptote.

Again, if not only a, but also b and c are zero, there are

two values of x that make y infinite ; namely, those values

of x that make dx2 + ex +f= 0. The equations of the

infinite ordinates are found by factoring this last equation;

and so on.

Similarly, by arranging the equation of the curve according

to powers of x, we can easily find what values of y give an

infinite value to x.

Ex. 1. In the curve

2 xs + z2
y + zy* = x2 — y

2 — 5,

find the equation of the infinite ordinate, and determine the finite

point in which this line meets the curve.

This is a cubic equation in which the coefficient of y
8 is zero.

Arranged in powers of y it is

y2(x + 1) + yx2 + (2 x8 t- z2 + 5) =0.
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When x = — 1, the equation for y becomes

• y
2 + y + 2 = 0,

the two roots of which are y = oo
, y = — 2 ; hence the equation of

the infinite ordinate is x + 1 = 0. The infinite ordinate meets the

curve again in the finite point (— 1, — 2).

Since the tern^in x8 is present, there are no infinite values of x

for finite values of y.

Ex. 2. Show that the lines x = a, and y = are asymptotes to the

curve a2x = y(x — a) 2 (Fig. 31).

Fig. 31

Ex. 3. Find the asymptotes of the curve x2
(y — a) + xy2 = a3

.

56. Method of substitution. Oblique asymptotes. The as-

ymptotes that are not parallel to either axis can be found by

the method of substitution, which is applicable to all algebraic

curves, and is of especial value when the equation is given in

the implicit form
/(*»y) = o. (i)

Consider the straight line

y = mx + b, (2)
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and let it be required to determine m and b so that this line

shall be an asymptote to the curve /(a*, y) = 0.

Since an asymptote is the limiting position of a line that

meets the curve in two points that tend to coincide at infinity,

then, by making (1) and (2) simultaneous, the resulting equa-

f(x, mx + b) = 0,

is to have two of its roots infinite. This requires that the

coefficients of the two highest powers of x shall vanish.

These coefficients, equated to zero, furnish two equations

from which the required values of m and b can be determined.

These values, substituted in (2), will give the equation of an

asymptote.

Ex. 4. Find the asymptotes to the curve y
3 = x2(2 a — x).

In the first place, there are evidently no asymptotes parallel to

either of the coordinate axes. To determine the oblique asymptotes,

make the equation of the curve simultaneous with y = mx + b, and

eliminate y. Then
(mx + b) 3 = x2(2a-x),

or, arranged in powers of x,

(1 + m3)x 3 + (3 m2b - 2 a)x2 + 3 b 2mx + bs = 0.

Let m3 + 1 = and 3 m 2b - 2 a = 0.

Then m = — 1, /> = =—;
o

hence y = - x +—
o

is the equation of an asymptote.

The third intersection of this line with the given curve is found

2 a
from the equation 3 mb2x -f b8 = 0, whence x = —•
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Fig. 32

This is the only oblique asymptote, as the other roots of the equation

for m are imaginary.

Ex. 5. Find the asymptotes to the curve y(a 2 + x2
) = a2(a - x).

Y

Fig. 33

Here the line y = is a horizontal asymptote by Art. 55. To find

the oblique asymptotes, put y = mx + b.

Then (mx + b) (a 2 4- x2
) = a 2(a - x),

i.e. mx* + bx2 + (ma 2 + a2)x + (a 2b - a8
) = ;

hence m = 0, b = 0, for an asymptote.

Thus the only asymptote is the line y = already found.
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57. Number of asymptotes. The illustrations of the last

article show that if all the terms are present in the general

equation of an nth degree curve, then the equation for deter-

mining m is of the nth degree and there are accordingly n

values of ra, real or imaginary. The equation for finding b is

usually of the first degree, but for certain curves one or more

values of m may cause the coefficients of xn and xn~x both to

vanish, irrespective of b. In such cases any line whose equa-

tion is of the form y = myx + c will have two points at infinity

on the curve independent of c ; but by equating the coefficient

of xn~2 to zero, two values of b can be found such that the re-

sulting lines have three points at infinity in common with the

curve. These two lines are parallel ; and it will be seen that

in each case in which this happens the equation defining m
has a double root, so that the total number of asymptotes is

not increased. Hence the total number of asymptotes, real

and imaginary, is in general equal to the degree of the equation

of the curve.

This number must be reduced whenever a curve has a para-

bolic branch, since in this case a value of m which makes the

coefficient of xn vanish does not correspond to any finite value

of b.

Ex. 6. Find the asymptotes of the curve (x — y)
3 = 2 x. The

equation in m is (m — l) 3 = 0. The coefficient of z3 vanishes identi-

cally when m = 1 ; that of x is 3(?n — l)b2 - 2 which cannot be made

to vanish for any finite value of b when m = 1* The curve has no

asymptotes.

Ex. 7. Find the asymptotes of the curve

0r-l)(2-^
* ' x - 3

and trace the curve. (Fig. 34.)
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Fig. U

EXERCISES

Find the asymptotes of each of the following curves:

1. y(a 2 - x2
) = b(2z + c).

9
x2 -2ax

3. x2
y
2 = a\x2 - y

2
).

b*
4. y = a +

5. y
z = x2 (a — x).

6. y\x - l) = x2 .

15. x8 + 2 x2y - xy2 - 2 y
s + 4 y

2 + 2 xy + y = 1

7. (* + a)y«=(y+6)*«.

8. x2
y
2 = a:

3
-f # + y.

9. xy2 + x2y = a 3
.

10. y(x2 + 3a2)=a*

11. x3 - 3 axy + y
8 = 0.

12. j;
3 + y

3 = a 3
-

13. x4 - x2
y
2 + a 2x2 + b* = 0.

14. x4 - y
4 - a 2

*^.
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POLAR COORDINATES

58. When the equation of a curve is expressed in polar

coordinates, the vectorial angle is usually regarded as the

independent variable. To determine the direction of the

curve at any point, it is most convenient to make use of the

angle between the tangent and the radius vector to the point

of tangency.

Let P, Q be two points on the

curve (Fig. 35). Join P, Q with

the pole 0, and drop a perpendic-

ular PM from P on OQ. Let p,

6 be the coordinates of P
; p + Ap,

+ A6 those of Q. Then the angle

POQ = A0', PM=p sin A0; and

Fig. 35 MQ= OQ- OM=p+Ap-p cos A0.

Hence tan MQP p sin A6

p -f Ap — p cos A0

When Q moves to coincidence with P, the angle MQP
approaches as a limit the angle between the radius vector

and the tangent line at the point P. This angle will be

designated by if/.

Thus tan if/

lim
*

A0 = O
p sin A0

p + Ap — p cos A0

But p (1 - cos A0) = 2 P sin2 i A0,

hence tan i/> = A0
l™

p sin A0

1 A/i sin i A0 . Ap
sm i A0--r-hr- +^±A0
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Since A l
lr

? ft

sm
- == 1, the preceding equation reduces to

i±0

tan if/
=

dp

dB

dO

dp (3)

Ex. 1. A point describes a circle of radius p.

Prove that at any instant the arc velocity is p times

the angle velocity,

ds

dt

' dt '

dt'

Ex. 2. When a point describes a given

curve, prove that at any instant the velocity

— has a radius component
l
-&- and a com-

dt dt

ponent perpendicular to the radius vector

p— , and hence thatr
dt

Fig. 37 cos \p
ds

i dO , . r<

, sin \p = p— , tan \p = p -

ds

This furnishes a dynamical proof of equation (3).

If59. Relation between -£- and pVdoc dp

the initial line is taken as the axis of x,

the tangent line at P makes an angle $
with this line.

Hence -f \p = <£

;

dd\ .. _Udyy

i.e., + tan" p— i
= tan"

dPj dx Fig. 38

60. Length of tangent, normal, polar subtangent, and polar sub-

normal. The portions of the tangent and normal intercepted

between the point of tangency Pand the line through the pole

perpendicular to the radius vector OP, are called the polar
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tangent length and the polar normal length; their projections on

this perpendicular are called the polar subtangent and polar

subnormal.

Fig. 39 a Fig. 39 b

Thus, let the tangent and normal at P (Figs. 39 a, b) meet the

perpendicular to OP in the points jVand M. Then

PN is the polar tangent length,

PM is the polar normal length,

ON is the polar subtangent,

OM is the polar subnormal.

They are all seen to be independent of the direction of the

initial line. The lengths of these lines will now be determined.

Since PN=OP- sec OPN= p sec ^

flO

4•\|j
+1

hence polar tangent length = p

dp

(16

dP

\P'+ D
v'<$)'

Again, ON= OP tan OPN= p tan if/
= p

hence polar subtangent = p'2—
dp

2 d$

dp'
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PM = OP • esc OPN= p esc ^ = yj/ + (&\
,

hence polar normal length = -v/p
2
-h (

—^* ) •

OM= OP cot OPN= *£,
dO

hence polar subnormal = -£ •

The signs of the polar tangent length and polar normal

length are ambiguous on account of the radical. The direc-

d6
tion of the subtangent is determined by the sign of p

2— •

09.
dp

When — is positive, the distance ON should be measured to
dp

the right, and when negative, to the left of an observer placed

at and looking along OP; for when increases with

d6
p, — is positive (Art. 28), and \p is an acute angle (as in

dp
d6

Fig. 39 b) ; when 6 decreases as p increases, _ is negative,

and if/ is obtuse (Fig. 39 a).

EXERCISES

1. In the curve p = a sin 0, find
\J/.

2. In the spiral of Archimedes p = aO, show that tan xp = 6 and

find the polar subtangent, polar normal, and polar subnormal. Trace

the curve.

3. Find for the curve p
2 = a 2 cos 2 the values of all the expres-

sions treated in this article.

4. Show that in the curve p6 = a the polar subtangent is of con-

stant length. Trace the curve.

5. In the curve p= a(l — cos 0), find if/ and the polar subtangent.
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6. Show that in the curve p = b • e9cota the tangent makes a con-

stant angle a with the radius vector. For this reason, this curve is

called the equiangular spiral.

7. Find the angle of intersection of the curves

p = a{l+ cos 0), p = h(l — cos 6).

a
8. In the parabola p = a sec 2 -, show that cp + $ = tt.

EXERCISES ON CHAPTER VII

Trace the following curves. Find asymptotes, intervals of in-

creasing and decreasing ordinate and direction of bending, as well as

intercepts on the axes.

1. y = xs + 2 x2 - 7 x + 1. 5. y
2 = xs

.

2. y
2 = x3 + 2 x2 -7 x + 1. 6. ay 2 = x3 - hx2

.

3. y = 2 -l) 2
. 7. z4 -7/4 = 2x.

4. x3 + ?/
3 = 1.

In the following curves find \p, determine whether p can become

infinite, and obtain the (angular) intervals of increasing and decreas-

ing p.

8. p = a cos 2 6. 10. p = «(1 - cos 0).

a

9. p = a sin 3 0. "• p = «sec 2-.



CHAPTER VIII

DIFFERENTIATION OF FUNCTIONS OF TWO VARIABLES

Thus far only functions of a single variable have been con-

sidered. The present chapter will be devoted to the study of

functions of two independent variables x, y. They will be

represented by the symbol

2 =/(?, y)-

If the simultaneous values of the three variables x, ?/, z are

represented as the rectangular coordinates of a point in space,

the locus of all such points is a surface having the equation

61. Definition of continuity. A function z of x and y,

z=f(x, ?/), is said to be continuous in the vicinity of any point

(a, b) when /(a, b) is real, finite, and determinate, and such

h
Y
Tof(a + h,b + k)=f(a,b),

k =

however h and k approach zero.

When a pair of values a, b exists at which any one of these

properties does not hold, the function is said to be discontinu-

ous at the point (a, b).

E.g., let z= x-+JL.
x - y

When x = 0, then z — — 1 for every value of y ; when y = then

2=4-1 for every value of x. In general, if y — mx,

- - 1 + m
1 — m
109
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and z may be made to have any value whatever at (0, 0) by giving an

appropriate value to m.

Geometrically speaking, when the point (x, y) moves up to (G, 0),

the limiting value of the ordinate z depends upon the direction of

approach.

62. Partial differentiation. If in the function

* =/to y)

a fixed value yx is given to y, then

is a function of x only, and the rate of change in z caused by a

change in x is expressed by

dz =— dx, (1)
dx

dz
in which — is obtained on the supposition that y is constant.

dx

To indicate this fact without the qualifying verbal state-

ment, equation (1) will be written in the form

d^Ax. (2)
OX

dz
The symbol — represents the result obtained by differentiat-

ed

ing z with regard to x, the variable y being treated as a con-

stant; it is called the partial derivative of z with regard to x.

From the definition of differentiation, Art. 6, the partial

derivative is the result of the indicated operation

dz = lim f(x + Ax, y)-f(x,y)
dx Ax ~° Ax

Similarly, the symbol — represents the result obtained by

differentiating z with regard to y, the variable x being treated
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as a constant; it is called the partial derivative of z with

regard to y.

The partial derivative of z with regard to y is accordingly the

result of the indicated operation

dz = lim f(x, y + &y)-f(x,y)
dy Ay = ° Ay

dz
dxz =— die is called the partial x-differential of z, and

dx

dz
cLz = — dy is called the partial y-differential of z.

by

EXERCISES

1. Given u = x* + 3 x*y* - 7 xys
,
prove that x ~-hy^=iu.

ox By

2. Given u = tan-1 ^, show that x— + y — = 0.
x dx dy

3. u = log (e* + e») ; find ^ +&
dx dy

4. n = sin ary; find ^ + ^.
dx dy

5. u = log (x + V^T^) ; find x~ + y|^

6. m = log (tan x + tan y + tan 2) ; show that

sin 2x^ + sin 2 y^ + sin 2 *<?H = 2.
dx dy dz

7. II = log (a; + y) ; show that f? +^ = 1.
5a: dy ew

8. ti = -3L; show that *^ + «£!?=«.
*+3/ dx *dy

9. u = (y-«)(2 -x)(x-y); show that ^ + f^ + ^ = 0.
dx dy dz

10
- » =^ show that g+g = (» + »-D«.

11. u = log (x3 + y
8 + z8 - 3 xyz) ; show that

du
,
du .Qu 3

dx dy dz x + y-\- z
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63. Total differential. If both x and y are allowed to vary

in the function z=f(x, y), the first question that naturally

arises is with regard to the meaning of the differential of z.

Let zx= f(xx,%),

and zx + Az = f(xl
-\- Ax, yx

-\- Ay)

be two values of the function corresponding to the two pairs

of values of the variables a^, yx
and xx + Ax, yx + Ay.

The difference

Az = f(xx + Ax, yx + Ay) - f(xx , yx)

may be regarded as composed of two parts, the first part being

the increment which z takes when x changes from x
x
to x

x + Ax,

while y remains constant (yz=y
x), and the second part being

the additional increment which z takes when y changes from

2/i to yx -f- Ay, while x remains constant (x = xx + Ax). The

increment Az may then be written

Az = f{xx + Ax, ^ + Ay) - ffa + Ax, ^)

4-/(«i + Ax, 2/0 -f(xx , yx)

- /fa + Aa?
> 2/1 + A

-y) ^ /fa + A:g
> yQ a?/

Ay

+ f(xx + Ax,yx)-f(xx,yl) ^x
Ax

From the theorem of mean value, Art. 39, the last equation

may be written

Az = A/fa + 6Ax, yx) Ax + A/fa + Ax, y, + $ x
Ay) Ay. (3)

dx dy

It represents the actual increment Az which the dependent

variable z takes when the independent variables x and y take

the increments Ax and Ay.
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To illustrate, let z = f(x, y) be the equation of a surface (Fig. 40).

Let Ai = (xi, y\), A 2 = (xi + Ax, y\), A%= (xi + Ax, y\ + Ay), so that

AiPi=f(xh y x ), AiPi~f{xi + Ax, y x), A zPi=f{xl + Ax, y x + Ay),

Q2P2 =/(2i + Ax, yi) -f(xh yi) = Aiz,

QzPz=f(xi + Ax, yi + Ay) -f(xi + Ax, y{) = A2z,

RzP&=f{xi + Ax, y x + Ay) -/(a*, yi) = Axz + A2z = Az.

As the moving point P passes from P to

P-2 along the plane curve P\P2 , the ordinate

takes the increment

Tt

n

i?f-'
Q3

'

Q*
/

i?a

A
' V

A 2

A 3

Fig. 40

where the derivative is taken at the inter-

mediate point x = x\ + 6Ax, y — y\ (Art. 39).

Similarly, as P passes from P2 to Pz along /

the plane curve P2Ps, the ordinate takes the

further increment

where the derivative is taken at the intermediate point y = y\ 4- diAy,

x = xi -f Ax.

The sum of these two partial increments gives the total increment Az.

In the preceding equation (3) let Ax, Ay, Az be replaced by

c • dx, € • dy, e • dz respectively, in which dx, dy are entirely

arbitrary. After removing the common factor e, let e approach

zero. The result is

(4)
dx dy

The differential dz denned by this equation is called the total

differential of z. It is not an actual increment of z, but the

increment which z would take if its change continued uniform

while x changed from xx to xx + dx and y changed from yx to

Vi + dy.

EL. CALC —

8
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In other words, dz is the rate of change of the variable 2

when the independent variables x and y change simultane-

ously at the rates of dx, dy respectively.

Equation (4) may be written in the form

dz = ^dx + -^dy = dxz + d
y
z,

dx dy

from which the following theorem can be stated ; the total dif-

ferent icd of a function of two variables is equal to the sum of iU

partial differentials taken with regard to the separate variables,

or the total rate of change of z is equal to the sum of its par-

tial rates.

The same method can be applied directly to functions of

three or more variables. Thus, if u is a function of the vari-

ables x, y, z, u=^(x,y
J
z)

)

then du = ~dx-\-^- dy + —* dz.
ox dy dz

Ex.1. Given z = axy'2 -\-bx2
y + ex3 + cy,

then dz = (ay2 + 2 bxy + 3 cx2)dx + (2 axy + bx'2 + c)dy.

Ex. 2. Given u = tan-1 --, show that du — ^ ~ "—
x x'1 + y'2

Ex. 3. Assuming the characteristic equation of a perfect gas,

vp = Rt, in which v is volume, p pressure, t ahsolute temperature, and

11 a constant, express each of the differentials dv, dp, dt, in terms of

the other two.

Ex. 4. A particle moves on the spherical surface x2 + y
2 + z2 = a2

in a vertical meridian plane inclined at an angle of 60° to the em-

plane. If the a;-component of its velocity is ^- feet per second when

x — -
, find the y-component and the ^-component velocities.

Since z = Va2 — x2 — y
2
,

then dz = ^ y- V

Va'2 — x2 — y'2 vV- — x2 — y'2
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But since dx = — , and the equation of the given meridian plane is

V = x tan 60°, hence dy — VS dx = a— , and y = ^—— • Thereforeu j
10 4

dz = -— - & = -— in feet per second.
2V3 2 15

Ex. 5. A triangle has a base of 10 units and an altitude of 6 units.

The base is made to increase at the rate of 2 units and the altitude

to decrease at the rate of \ unit. At what rate does the area change?

Ex. 6. A point on the hvperboloid x2 — &- = 1 in the position
4 5

x = 2, y — 2 moves so that x increases at the rate of 2 units per sec-

ond, while y decreases at the rate of 3 units per second. Find the

rate of change of z.

Ex. 7. If the area of a rectangle A = xy is incorrectly measured

owing to a small error dx, dy in the length of each side, how close

is dA = xdy + ydx to the actual error in the area?

64. Total derivative. If in the relation z=f(x, y), the vari-

ables x, y are not independent, but both are functions of

another variable s, the process of the preceding article can

still be applied. The variable z is now a function of s, and

its derivative as to s may be expressed in the form

dz _ dz dx dz dy

ds dx ds dy ds

In particular, if y is not independent, but is a function of

x, then s may be chosen as x itself, and the preceding equation

becomes
'

dz _ dz dz dy

dx dx dy dx

If the functional relation between x and y is given,

y = <*>0)>
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dz
then the same result will be obtained, whether — is deter-

dx
mined by the present method, or y is first eliminated from the

relation

*=f(®, y),

and the resulting equation is differentiated as to x. The

method of this article frequently shortens the process.

It is here well to note the difference between — and — •

dx dx

The former is the partial derivative of the functional expres-

sion for z with regard to x, on the supposition that y is con-

stant. The latter is the total derivative of z with regard to

x, when account is taken of the fact that y is itself a func-

tion of x.

In the former case the differentiation with regard to x is

merely explicit ; in the latter it is both explicit and implicit.

dz
Ex. 1. Given z = Vx2

-f y
2
, y = log x; find

dx

dz _ x y dy

dx y/x2 _f.
yi \Ac2 + y

2 dx

d]L-_

dx

_1

x

dz X2 + y
dx x yJx 2 + yl

hence

Ex. 2. If z = tan-i ^- and 4 x2 + y
2 = 1, show that ^ =—

.

2x dx y

65. Differentiation of implicit functions. If, in the relation

z =f(x, y), z is assumed to be constant, then

dz = :



FUNCTIONS OF TWO VARIABLES 117

hence ¥-dx + d
fdy = 0, (1)

dx By

from which ^ = -37- (2)

dy_
dx

df

dx

dy

In all such cases either variable is an implicit function of

the other, and thus the last equation furnishes a rule for

finding the derivative of an implicit function.

Ex. 1. Given x3 + y
3 + 3 axy = c, find -^.

dx

Since (3 x2 + 3 ay) + (3 y
2 + 3 ax) ^ = 0, ^ = - x* + ay

.

dx dx y
2 + ax

Ex. 2. /(a* + ty) = c
;

J£
= a/'(ax + by)

; |£ = &/'(«* + by)
;

<7y _ _ a

</x~ &'

Ex. 3. If ax2 + 2 fary 4- %2 + 2 gx + 2fy + c = 0, find ^.
</x

Ex. 4. Given x4 - y4 = c, find^.
</x

Ex. 5. If x increases at the rate of 2 inches per second as it passes

through the value x = 3 inches, at what rate must y change when

y = 1 inch in order that the function 2 xy2 — 3 x2y shall remain

constant ?

If u = 2 xy 2 - 3 x2
y,

then
du n i a du a— = 2y2 -Qxy, ^-=± Xy-
dx dy

du dy

dy _ dx _ 2y2 -6xy _dt
dx ~ du ~ 4 xy — 3 x2 ~~

</x

dy dt

Since x = 3, y — 1, -y = 2, hence, -y = - 2 T
2
5 inches per second.
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Ex. 6. u — v 2 -f vy, v = log s, y = e8 . Find —

Ex. 7. u = sin" 1 (r - a), r = 3 7, s = 4 *
3

. Fin

Ex. 8. e» _ c * + a^ = o. Find ^.

Ex. 9. sin (*#) - e** - xhj = 0. Find ^.

du

dt

It is to be noticed that the result of differentiating any implicit

function of x, y by the method of the present article will agree with

the result of differentiation according to the rules of Chapter II.

66. Geometric interpretation. Geometrically, the equation

z =f(x, y) represents a surface. The equation y = yx defines

a plane parallel to the ^-coordinate plane. The two equations

treated simultaneously therefore define the plane section made

on the surface z = f(x, y) by the plane y = yx
. The derivative

dz—
- defines the slope of the tangent line to this curve at the

ax
x

point (x
l} yu z

x).

Similarly, the plane x = xl cuts the surface in a section

parallel to the yz-coordinate plane. The slope of the tangent

dz
line to this second curve is defined by —-. The equations of

these two lines are

V = 2/i, z - z1 = —i (x - x
x),

dxx

dz
x = x

x , z-z x
= -± (y - ?/,).

They have the point (x
x , y x , z

x) in common ; hence the two lines

will define a plane. The equation of any plane through the

first line will be of the form

dXi
+ *(//-*/,)= o,
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and similarly, the equation of any plane through the second

line will be of the form

oyi
+ k'(x-x

1)=0.

These two equations will be identical when

dz, , dz-,
K = ~ ^H~> k = — —-j

tyi Mi

hence the equation of the plane containing both lines is

2 - *i = -p- (x - a^H ^-{y - vi).
dx

x
dyx

It is called the tangent plane to the surface z = f(x, y) at the

point («!, yv z
x).

From the equation

dM = %Ldx+pLdg, (3)
ax

l dy1

it is seen that if x, y receive the arbitrary increments dx, dy,

then the increment dz is defined by the sums of the products

of these increments by the corresponding partial derivatives.

Thus, if dx = x — X], dy = y — yl9
dz = z — zl9 it is seen that

the point (x, y, z) always lies in the tangent plane to the sur-

face z =f(x, y), however the increments dx and dy approach

zero.

Moreover, the equations of the line joining (xlf yl9 zx) to

Xj -f A#, ?/! + Ay, z
y + Az on the surface will be of the form

x - :>\ __ y - y l _ z - z
x

Ax A?/ Az
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Now as Ax, Ay approach zero, the point always remaining

on the surface, the line becomes a tangent in the limit, and its

equations are x~x1 = y-y1 = z-zx (i)
dx dy dz '

W

wherein dx, dy depend upon the direction of approach, and dz

is defined by (3).

But a tangent line to the surface is also tangent to any plane

section passing through the line, and the line (4) is seen to lie

in the tangent plane, hence

:

TJie tangent lines to all the plane sections of the surface

z =f(x, y) passing through the point (xx, yx, Zj) lie in the tangent

plane at that point.

The line through (xY, yly z±) perpendicular to the tangent

plane
dz dzt-^^-^+dy1^-^

is called the normal to the surface at the point (x^ yx ,
z^). Its

equations are
X - Xl y-yx

. z-z
x

dzx dzx
— 1

dxx dyx

If the equation of the surface is given in the implicit form

F(x, y, z) = 0, then since

dF,
,
dF

, ,
dF, ft-—dx-\ rt?y -| dz = 0,

ox dy ' dz

the equation of the tangent plane becomes, if F(a;1, ylf z^) = F
1?

dxt dt/t dz
l
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and those of the normal are

3-3*
1 = y—V\ _ g-gi

bFy dF\ BF
X

'

dxx
dy1 dzj

EXERCISES

1. Show that the plane z = touches the surface z = xy at (0, 0, 0).

2. Find the equation of the tangent plane to the paraboloid

z = 2 x 2 + 4 y
2 at the point (2, 1, 12).

3. Find the equations of the normal to the hyperboloid

x2_4y2 +2za =6at (2,2,3).

4. Show that the normal at any point (xh yi, z{) on the sphere

x2 + y
2 + z2 = 16 will pass through the center.

5. Find the equation of-the tangent plane at any point (x\, yh z\)

of the surface x1 + y* + z 5 = a* and show that the sum of the squares

of the intercepts which it makes on the coordinate axes is constant.

6. Show that the volume of the tetrahedron cut from the coor-

dinate planes by any tangent plane to the surface xyz= a 3 is constant.

7. The sphere x2+ y
2+ z2 = 14 and the ellipsoid 3 x2 +2 y

2 + z2 = 20

pass through the point (—1,-2,-3). Determine the angle at

which their tangent planes at this point intersect.

8. How far distant from the origin is the tangent plane to the

ellipsoid x2 + 3 y
2 + 2 z2= 9 at the point (2, -1, 1) ?

9. Find the equation of the tangent plane and of the normal to

the cone z2 = 2 x2 + y
2 at (xly yi, z\) on the surface. Show that the

plane will always pass through the vertex of the cone.

10. Find the equations of the tangent line to the circle

x2 + y
2 + z2 = 25,

x + z = 5,

at the point (2, 2V3, 3).
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67. Successive partial differentiation. The expressions

dz dz— , — which were denned in Art. 62 are functions of both
ox oy

x and y.

dz
If — is differentiated partially as to x, the result is written

ox

d_fdz\ ==
dh

m

dx\dxj dx2

This expression is called the second partial derivative of

z as to x.

Similarly, the results of the operations indicated by

JL{<>?\ JL(te\ JL(te\

dy\dxf dx\dyf dy\dyj

dh dh d2
z

are written -—-, —— , -— respectively.
oy ox ox oy oyz

Beginning with the left, we call these expressions the

second partial derivative of z as to x and y, the second partial

derivative of z as to y and x, and the second partial derivative

of z as to y.

68. Order of differentiation indifferent.

Theorem. The successive partial derivatives

d2
z dh

By dx dx dy

are equal for any values of x and y in the vicinity of which

z and its first and second partial x- and ?/-derivatives are

continuous.

The truth of this theorem will be assumed. Tt should be

verified for special cases as in the following examples.
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Cor. It follows directly that under corresponding conditions

the order of differentiation in the higher partial derivatives is

indifferent.

dh dsz . ffhs
E.g.,

dx dy dx dx2 dy dy dx2

EXERCISES

1. Verify that -^_ = J£}L.
%
when u = xh/\

dx dy dy dx

2. Verify that -_^H_ = J^, when u = xhj + xy9.

dx dy2
dy'

2 dx

3. Verify that -^L = -^-, when u = y log (1 + xy).
dx dy dy dx

4. In Ex. 3 are there any exceptional values of x, y for which the

relation is not true?

5. Given u = (x2 + y
2)l, verify the formula

*2^ +2*^ +^ = 0.
x 2 dx dy dy2

6. Given u = (xs
-f t/

s
) I, show that the expression in the left

member of the differential equation in Ex. 5 is equal to—

.

7. Given u = (x* + y* + z*yh prove that
B~ + ^ + = 0.

8. Given u = sec (y+ax) + tan (?/ - ax)
;
prove that— = a^'u

-

dx2
dy2

9. Given M=sinx cosy; verify that
d u = ^ = ^u

.J
dy2 dx2 dxdydxdy dx2 dy2

d
2u d

2u
10. Given «=(4a&- c2)-|

;
prove that :rr = r

-
^!*

11. If «=*&L, show that o;^ + „-i^-=2^.
* + # dx*

J
dxdy dx

12. Given u = log (a:
2 + y

2
), prove 5^ + — = 0.

a< 2 ay
13. If u = (xn + y

ny, show that the equation of Ex. 5 is satisfied.

14. Given u = (x* + y* + z2 + w2)" 1
,
prove ^ + <*% + ^f + S^M. =

d*2 9^ a*2 Qw*



CHAPTER IX

CHANGE OF VARIABLE

69. Interchange of dependent and independent variables. If

y is a continuous function of x, defined by the equation

f(x, y) = 0, the symbol — represents the derivative of y with

regard to x, when one exists. If x is regarded as a function of

y, defined by the same equation, the symbol — represents the
dy

derivative of x with regard to y, when one exists. It is re-

quired to find the relation between -^ and —
dx dy

Let x, y change from the initial values xly yx to the values

x1 + Ax, yx + Ay, subject to the relation f(x, y) = 0.

Then, since AAy _ 1

Ax Ax
Ay

it follows, by taking the limit, that

dx dx

dy

(1)

Hence, if y and x are connected by a functional relation, the

derivative of y with regard to x is the reciprocal of the derivative

of x with regard to y.

This process is known as changing the independent variable

from x to y. The corresponding relations for the -higher de-

124
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rivatives are less simple. They are obtained in the following

manner

:

d y dx d x
To express —4 in terms of —,

—
- differentiate (1) as to x

;

dx2 dy dy2

d2
y _ d

[

1 d
[

1 dy _ d
\

1
1

dx2 dx 1
dx dy dx dx dy dx

idy dy\ idyl

dx

dy

But

hence

In a similar manner,

—
l

1
}-

dy dx 1

idyl

d2x

dy2

,

/dx\ 2

[dyj

d?x

d2

y
dx2

dy2

fdx\
3
'

\dy)

ner,

d3
y

d3x dx o fd
2x\i

d?dy WJ
dx3 fdx\ 5

\dy)

(2)

(3)

70. Change of the dependent variable. If y is a function of z,

let it be required to express — — , •••in terms of — ,
—

-, •••.

dx dx- dx dx-'

Suppose y = <f>(z). Then

dy ^dycte = ^u\dz_
dx dz dx dx

dx2 dxV KJ
dx

dz d .i^\,,i/^d2
z
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But ^-<l>'(z) = -cp'(z)- = <p"(z)—
dz* K ;

dz
v ;

<to
v v

"eta

S-^S'+^S- (4)

The higher ^derivatives of y can be similarly expressed in

terms of ^-derivatives of z.

71. Change of the independent variable. Let y be a function

of x, and let both x and y be functions of a new variable I. It

is required to express — in terms of -3L. and — in terms of1
, cto eft' dx2

-- and —a-

eft eft
2

By Art. 8, e%

% = d*
? (1)

die do?

hence

d2
?/ C?£C d2^ e%

^y_ ~dfdi~~d^di
(9)

fdx\*

dt

In practical examples it is usually better to work by the

methods here illustrated than to use the resulting formulas.

72. Simultaneous changes of dependent and of independent vari-

ables. Suppose, for example, that an equation involving x, y,

— , . . . is given, and it is required to transform the equation

into polar coordinates by means of the formulas x = p cos 0,

y = p sin 6. Since the variables x and y are connected by some

equation (y being a function of x), we may regard x, y, p as
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functions of 6. E.g., consider the function

12'

11 =HtJf
dry

dx2

rom Art. 71, dy

dy _d0
f

dx dx

dO

dx d-y dy drx

d2
y dO

'

d6- dO
'

d0\

dx- /dxX3

tie.

By substituting these values in the expression for E, it becomes

R

dx\ 2

,

(dy

dO \d0

dx d~y dy
^
d2x

dO
'

~d&-
~

dd
' d¥

This is in terms of a new independent variable 0. We have

now to express these ^-derivatives of x and y in terms of p

and 6.

From the relations x = p cos 0, y = p sin we have

g= - p cos*-2sin*|+ cos*g,

dhj

d$-

' = - p sin + 2 cos =c 4- sin
dp

d$ de2
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Upon substituting these values in the last expression for B,

we obtain

B = W]
f + 2(«!>)*- p

*E
(16

EXERCISES

1. Change the independent variable from x to z in the equation

x2—\ + x — '- + y = 0, when x = e*.

dx2 dx
a

dx dz

dx2 dz2 dz

Hence x2^- + x^- + y = becomes^ + y = 0.

2. Interchange the function and the variable in the equation

dx2 \dxj

3. Interchange x and y in the equation

</x2

4. Change the independent variable from ar to y in the equation

JdY\ 2 _dy d*«_d2
y (djY= o

V^2 / dx dx* dx2 \dx)

5. Change the dependent variable from y to z in the equation

!^= 1
+2(1 +.V)fM', when y = tans.

</x2 1 + y* \dxl
*
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6. Change the independent variable from x to y in the equation

x2 h x \- u = 0, when y = log x.

dx2 dx

7. If y is a function of x, and x a function of the time t, express

the ^/-acceleration in terms of the ar-acceleration, and the x-velocity.

Since
dy = dydx
dt dx dt

hence
d2
y _ dy (Px .dx d fdy\

dt 2 ~ dx dt2 dt <it\dx)'

c]l( (
111\ = ^_((J][\flx = d2y(lx

it\dxl ~ dxKdxj dt dx2 dt'
But

dt

d2
y _ dy d2x d2

y ldx\ 2

hence ^-s^ +sUi'

In the abbreviated notation for /-derivatives,

dx dx2

8. Change the independent variable from x to u in the equation

dry 2 x dy y

dx2 1 + x2 dx (1 + x2
)
2

]y + y = 0, when x = tan u.

9. Change the independent variable from x to t in the equation

(1 _ X2)A _ x
(Il = o, when x = cos t.

dx2 d-x

10. Show that the equation

d2
y ,

dy . A

dx2 dx
J

remains unchanged in form by the substitution x = .

EL. CALC 9
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11. Interchange the variable and the function in the equation

dx2 \dxl
y
\dx)

12. Change the dependent variable from y to z in the equation

|j*+ a - y)% + y
2 = °' when y

= z
'2

-

Change the independent variable from x to t in the equations

:

13. CI — x2
)— — x— + y = 0, given a: = cos t.

K
clx2 dx

y
'
h

14. x3—
- + 3 x2

\- x 1- v = 0, given x — e l
.

dx3 dx'1 dx

15. x4^ +fl 2^ = 0, x = -.
dx2

t

dy
X
dx~ V

16. Transform by assuming x = p cos 6, y = p sin 0.

17. Given z = 7 + *
2
, ?/ = 3+ *

2 - 3 l\ Find —

.



CHAPTER X

EXPANSION OF FUNCTIONS

It is sometimes necessary to expand a given function in a

series of powers of the independent variable. For instance,

in order to compute and tabulate the successive numerical

values of sin x for different values of x, it is convenient to

have sin x developed in a series of powers of x with coeffi-

cients independent of x.

Simple cases of such development have been met with in

algebra. For example, by the binomial theorem,

(a + x) n = an + nan~lx + n l - 1) a—v + • .

.

;

(1)
J. • A

and again, by ordinary division,

j-L-=l + s + 3»+ aj»+.... (2)

It is to be observed, however, that the series is a proper

representative of the function only for values of x within a

certain interval. For instance, the identity in (1) holds

only for values of x between — a and -f a when n is not a

positive integer ; and the identity in (2) holds only for values

of x between — 1 and -f 1. In each of these examples, if a

finite value outside of the stated limits is given to x, the sum

of an infinite number of terms of the series will be infinite,

while the function in the first member will be finite.

131
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73. Convergence and divergence of series.* An infinite series

is said to be convergent or divergent according as the sum of the

first n terms of the series does or does not approach a finite

limit when n is increased without limit.

Those values of x for which a series of powers of x is con-

vergent constitute the interval of convergence of the series.

For example, the sum of the first n terms of the geometric

series
, , 2 , s ,a -f- ax 4- axz + ax? -\

ail — xn)
is sn = -1 >-.

1 — x

First let x be numerically less than unity. Then when n is

taken sufficiently large, the term xn approaches zero

;

hence Hm
sn = -^--

W = co l_ x

Next let x be numerically greater than unity. Then xn be-

comes infinite when n is infinite ; hence, in this case

lim
,,-od *» = «>•

Thus the given series is convergent or divergent according

as x is numerically less or greater than unity. The condition

for convergence may then be written
.

-l<a<i,

and the interval of convergence is between — 1 and -|- 1.

Similarly the geometric series

l-3z + 9z2 -27^+...,
>

* For an elementary, yet comprehensive and rigorous, treatment of this

subject, see Professor Osgood's " Introduction to Infinite Series" (Harvard

University Press, 1897).
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whose common ratio is — 3 x, is convergent or divergent accord-

ing as 3 a; is numerically less or greater than unity.

The condition for convergence is — 1 < 3 x < 1, and hence

the interval of convergence is between — ^ and -f- ^.

74. General test for convergence.

Let £= ?<! + u2 + u3 -\ hMn+ MB+1 H

be a series of positive terms having the property that w+1 < r

(r a fixed proper fraction) for all values of n that exceed a def-

inite integer k that can be assigned. We wish to prove that

under these conditions S is convergent. This is called the ratio

test for convergence.

According to hypothesis we have the inequalities

^±l<r, ^*±*<r, ^±-3 <r, etc.
Uk Uk+\ Uk+2

By multiplying the first two equalities together we obtain

^^ < r2
;

then, multiplying this result by the third of the
uk

given inequalities we deduce further -^±?<r3
; and so on. These

results may be written in the form

%+i < ruk ,
uk+2 < r*uk, w4+3 < rhik,

.-• , uk+p < r'uk.

Hence we have the inequality

S < u x -f u2 H (- uk -f ruk -f r
2^ + rX -\

But the series in the right member, which may be denoted by

S'j can be put in the form

S'= ^ + W2 -f — + m*_i + uh (1 -f r + r2 + r3 + •••)

= wx + w2 H f- ?^_! + -^*- •

1—

r
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The terms ux, u2,
••• , uk being assumed finite, it follows that

S' is finite and hence S, which is less than S', also is finite.

Since S is formed by the successive addition of positive terms,

it follows that the series S converges towards a definite finite

limit.

If the series S contains an infinite number of negative, as

well as of positive, terms, it converges whenever the series

formed by the positive, or absolute, values of its terms eon-

verges. The series is then said to be absolutely convergent.

In order to prove the preceding theorem, we obeerve that

the positive terms of S taken alone form a converging series,

whose limit will be denoted by P, and the negative terms taken

alone will form a converging series whose limit will be denoted

by — J¥.
t

Let Sm denote the sum of the first m terms of S and

suppose that these consist of p positive terms whose sum is

denoted by Pp
and of n negative terms whose sum is — Nn .

Then we have Sm = Pp
— Nn . Now when m becomes infinite,

p and n also become infinite, and hence

a lim - e . .
Km p _ lira jy __ p_ *r

m i oo m p = oo p n = oo »

Therefore, S is convergent.

When a series is convergent, but the series formed with

the absolute values of its terms is not convergent, the given

series is said to be conditionally convergent*

The absolute value of a real number u is its numerical value

taken positively, and is written
|

u |.

If a series consists of terms that are alternately positive

* The appropriateness of this terminology is due to the fact that the terms

of an absolutely convergent series can be rearranged in any way, "without

altering the limit of the sum of the series ; and that this is not true of a con-

ditionally convergent series. For a simple proof, see Osgood, pp. 43, 44.
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and negative, and if, after any definite term of the series, each,

succeeding term is numerically less than the preceding one,

then the series is convergent.

For, suppose that beginning with the term nk, the series is

&' = V
k ~ V k+ l + %+2 — Uk+3 + Uk+i ~ '"

>

in which uk , vk+l , etc. represent positive numbers and nk+l < uk ,

uk+2 < Uk+u ••'
j
nm+i < l'mi f°r every value of m greater than 7c.

By grouping the terms in pairs, (uk
— iik+l), (uk+2—uk+^), ••• , each

of which is positive, it is seen that S' has a positive value,

which .may be finite or infinite.

But S' may also be written in the form

& = uk - [(%+i - *<*+2) + (m*+8 - uk+i) + •••],

wherein the terms in brackets are all positive, hence S' has a

value less than u
k . It therefore converges towards a definite

finite limit.

It now follows that the approximate value of S' obtained by

algebraically adding u k , uk+l ,
••• , um differs from the true value

of the series by a number less than um . This fact can be

shown in precisely the same way as that by which S' has just

been shown to have a value less than uk .

Ex. 1. Is the series 1 1 \- ... + (— l)'
1-1 - + ••• con-

2 3 4 n
vergent i

Since the terms are alternately positive and negative and their

numerical values are always decreasing, it follows at once from the

preceding paragraph that this series is convergent. It will be found

later that its value is log 2.

Ex. 2. Prove the convergence of the series met with in Art. 16,

a+ i. + l +i + ...+J- + ...-.

•2! 31 4!
T

n\
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In this case un = 1 , wn+1 = 1—
. Hence ^±1 = —1— . This

n ! (w + 1)

!

m„ n + 1

ratio is less than \ for all values of n greater than 2, and the ratio

condition for convergence is satisfied.

Ex. 3. Prove the divergence of the harmonic series

The ratio un+i : un becomes greater than r when n is sufficiently

large. By grouping the terms it may be written in the form

1 + *+(* + *) + (* + * + * + »+-,
the succeeding groups having 23

, 2 4
,

••• , 2n ,
••• consecutive terms re-

spectively. The sum of the terms in any group is greater than \.

For, in the nth group the last term — has the least value, and as there

are 2n_1 terms in the group their sum is greater than 2n_1 —= -•

As there is an infinity of such groups, their sum is infinite.

Ex. 4. The series

£=1 + 1 + 1-+ ... +1+...

is convergent for p > 1.

Let the terms of S be grouped in the following manner

:

the nth group beginning with and containing 2n_1 terms.

The nth group is accordingly less than its first term multiplied by

the number of terms in the group, that is, < 2n_1 • — = —

—

.
& r ' '

(2" _1
)
p (2n—

1

)
p_1

Hence we deduce the inequality

the right member of which is a geometric series having —— as the

common ratio. It is therefore convergent, and hence S is convergent,
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if < 1. This inequality is satisfied for every value of ^greater

than unity. Moreover, it was shown in Ex. 3 that ior p = 1 the series

5 is divergent. When p < 1, S is divergent. For in that case

—->-, n is any positive integer (except 1), and therefore the
n p n

terms of S are greater than the corresponding terms of the harmonic

series.

Hence

:

The necessary and sufficient condition that the series 1 -\— + - \- •••

may converge is p > 1.

Ex. 5. Show that the- series 1
=

—

\-

12 2-3 3.4+ n(n+l)
is convergent.

This may fc>e proved by comparison with the series in Ex. 4 for the

particular case p = 2.

1 .-, 1 .1 1 .1 1 .1
Since

l-2
<

' 2-3
<

22 ' 3-4
<

3 2 '
'"

' n(n + 1)
<

n*'
"'

it follows that the value of the given series is less than that of

which is known to be convergent on account of the theorem deduced in

the preceding example.

Ex. 6. Examine for convergence the series whose nth term is ——
n2+l

r
n = * ^ -

1

Hint. n2 + 1 1 ^ n + 1
n -\

n

Ex. 7. Examine for convergence the series

l_ 2
f i _ . ,

(~l) w~^

2 5 10 n2 + 1

Ex. 8. Determine whether the series whose nth term is
n2 + 1

convergent or not; the series whose general term is —— .

n3+ l
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75. Interval of convergence. If the terms u1} u2,
••• of a given

series are functions of a variable x, then the series will usually

converge for .some values of x and diverge for all others. In

such a case the problem is to determine the interval of conver-

gence, that is, the range of values of x for which the series is

convergent The following examples will illustrate the method

of procedure.

Ex. 1. Determine the interval of convergence of the series

1 + x -f 2 x2 + 3 xs + ••• + nxn + ... .

In this case un = (n — l)^""-1 and un+1 = nxn..

Hence, ^ = "*" = -JL- x.
un (n-l)x n- 1 n-1

According to the ratio condition for convergence, it is necessary

that this ratio shall be numerically less than 1 for all values of n

exceeding a fixed number k. As n increases, the fraction
71—1

approaches unity. Hence if
[
x

\
has any fixed value less than 1, the

given series is absolutely convergent. The interval of convergence

is defined by the inequalities — 1 < x < 1.

It is evident from the preceding example that the ratio con-

dition for the absolute convergence of a series ma}^ be written

lim l±n±l < 1, (3)

which is especially convenient for application.

Ex. 2. Find the interval of convergence of the series

1 + 2 • 2 x + 3 • 4 x2 + 4 • 8 x* + 5 • 16 x* +.- .
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Here the nth term un is n 2n_1xn_1 , and the (n -f l)th term un+1 is

(n + \)2nxn
;

i ^n+i (n 4- l)2"z* (n + 1) 2 x
lience -J!±±=*-——^ = i—

—

i

wn w2n-1x" » n

therefore when n = co, -^ = 2 x.

It follows by (3) that the series is absolutely convergent when

— 1 <2#<1, and that the interval of convergence is between —
\

and + \. The series is evidently not convergent when x has either

of the extreme values.

Ex. 3. Find the interval of convergence of the series

x

1-3 3

x3 x5 x"
>

(_l)n-i^2M-i ^

• 3 3 5-35 7-37 "" (2n-l)32"-1

Here
t/ H 4.i I _ 2n - 1 32""* a;

2"* 1

= 2n-l z2
.

w
ft

2 n + 1
'

b2"* 1 ' x2"-i 2 n + 1
'

32
'

v Inn
hence

n = co 32 '

a:
2

thus the series is absolutely convergent when — < 1, i.e., when
b

— 3 < x < 3, and the interval of convergence is from — 3 to + 3.

The extreme values of x, in the present case, render the series con-

ditionally convergent.

Ex. 4. Determine the interval of convergence of the series

2 ! 4 ! 6

!

.

' (2 n - 2)

!

Since even powers of x are positive, the terms of this series are

alternately positive and negative. The term wn+1 is derived from u n

by multiplying it by . For all values of n such that
(2 n — 1)2 n

this fraction is less than 1, we shall have the condition
[
un+1 | < |

n n \

and the series is convergent on account of the property of series with

alternately positive and negative terms.
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Ex. 5. Prove the convergence of the series

Inthiscase
|

un |=z2 -
f

1 +-+••• +—Y Notice that
h

.

m
I uJ

\9 4 2"-1
/ n=<x> '

n[

is not zero. The series is nevertheless convergent, but not absolutely

convergent.

Ex. 6. Determine the interval of convergence for the series

16 n

Ex. 7. Determine the interval of convergence for the series

-A_ + 2 3 + ... +
_n

_ + ....

x-1 (x-1) 2 (ar-l)* (ar-l) w

Ex. 8. Find the interval of convergence for the binomial series

-,
, ,

a(a — 1) 9 ,
a(a — Y)(a — 2) „

,

1 4-rtxH—i —*- x2
H—

^

^ '- x3 +

in which a is any constant.

Ex. 9. Show that the series

has the same interval of convergence as that of Ex. 3 ; but that the

extreme values of x render the series absolutely convergent.

76. Remainder after n terms. The last article treated of

the interval of convergence of a given series without reference

to the question whether or not it was the development of any

known function. On the- other hand, the series that present

themselves in this chapter are the developments of given func-

tions, and the first question that arises is concerning those values

of x for which the function is equivalent to its development.
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When a series 1ms such a generating function, the difference

between the value of the function and the sum of the first n terms

of its development is called the remainder after n terms. Accord-

ingly, if f(x) is the function, Sn(x) the sum of the first n terms

of the series, and lin(x) the remainder obtained by subtracting

S„(x) from fix), then

in which Sn (x), Rn(x) are functions of n as well as of x.

If JToO R-^)= >
tllei1 Hi" «-(*) =/(*) i

thus the limit of the series Sn(x) is the generating function

when the limit of the remainder is zero. Frequently this is

a sufficient test for the convergence of a series.

If a series is expressed in integral powers of x — a, the pre-

ceding conditions are to be modified by substituting x — a for

x ; in other respects each criterion is to be applied as before.

77. Maclaurin's expansion of a function in a power-series.*

It will now be shown that all the developments of functions

in power-series given in algebra and trigonometry are but

special cases of one general formula of expansion.

It is proposed to find a formula for the expansion, in

ascending positive integral powers of x — a, of any assigned

function which, with its successive derivatives, is continuous

in the vicinity of the value x = a.

The preliminary investigation will proceed on the hypothe-

sis that the assigned function f(x) has such a development,

Named after Colin Maclaurin (1608-1746), who published it in his

" Treatise on Fluxions " (1742) ; but he distinctly says it was known by

James Stirling (1692-1770), who also published it in his " Methodus Differ-

entialis "(1730), and by Taylor (see Art. 78).
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and that the latter can be treated as identical with the former

for all values of x within a certain interval of equivalence that

includes the value x = a. From this hypothesis the coeffi-

cients of the different powers of x — a will be determined. It

will then remain to test the validity of the result by finding

the conditions that must be fulfilled, in order that the series

so obtained may be a proper representation of the generating

function.

Let the assumed identity be

fix) = A+B(x-a) + C(x- a) 2 + D(x- a)3

+E(x-ay+-, (1)

in which A, B, C, ••• are undetermined coefficients, indepen-

dent of x.

Successive differentiation with regard to x supplies the

following additional identities, on the hypothesis that the

derivative of each series can be obtained by differentiating it

term by term, and that it has some interval of equivalence

with its corresponding function :

f(x) = B + 2C(x-a)+ 3D(x-a) 2+ ±E(x-af+ •••

f"(x)= 2(7 +3-2D(x-a) + 4 . 3E(x-af+ •-.

f"(x)= 3.2Z> +4.3.2^(»-o)+-.-

If, now, the special value a is given to x, the following

equations will be obtained:

f(a)=A,f(a) = B, /"(a) = 2 C,f"(a) = 3-2D, -.

Hence,

A =/(«), B=/(a), C=f
-^f,

D=f-^, -
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The coefficients in (1) are now determined, and the required

development is

/(a5)=/(a) +/(a)(a5-a)+^^(aj-a)«+£^(a5-a)»

(2)

2!

This is known as Maclaurin's series, and the theorem ex-

pressed in the formula is called Maclaurin's theorem.

Ex. 1. Expand log x in powers of x — a, a being positive

1

x
Here /(*) = log x,f(x) = £,/"(*)

1 1.0
V'"(*)

=:LT

Hence, /(a) = log a,f'(a) = If" (a) = - I, /"'(a) = ^1-2

/«(a)

and, by (2), the required development is

(-l)-i(w -l)|

log x = log a + 1 (* - a) - J- O - a) 2 + -L (a; - a) J

a 2 a2 o a3

The condition for the convergence of this series is

lira I
(x— a)^ 1

.
(x - a)>

(n + l)an+ 1

x — a

nan
<1,

<1,

\x - a \<a,

0<x<2a.

• This series may be called the development of log x in the vicinity of

x — a. Its development in the vicinity of x = 1 has the simpler form

log X = X - 1 - 1(X - I)* + \(X - l) 3 - ..,

which holds for values of x between and 2.
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In using this series for the computation of a table of logarithms

we may put for a any number whose logarithm is already known, and

for x any number near a in magnitude. It is a great advantage to

keep x — a so small that the power-series in x — a may be not merely

convergent, but may converge to its limit so rapidly that all powers of

x — a above the fourth or fifth may be neglected without affecting the

desired degree of accuracy.

E.g., being given log 10 = 2.302585, suppose it is required to com-

pute log 11, log 12, •••, log 20. Put a = 10, and x = 11. Then

logi^iogio+^-Kr^HKi^^K^+Ki^-Ki^HKiV) 7 ---

The numerical work may be tabulated in the following form

:

+ 2.30258509

.10000000 - .00500000

.00033333 .00002500

.00000200 .00000017

.00000001 - .00502517

2.40292043

- .00502517

2.39789526

Hence log 11 = 2.397895-.,

correct to six places of decimals. To make sure of the sixth figure it

is well to carry the work to seven or eight figures. The remaining

terms of the series after KrV) 7 cannot affect this result, because their

sum is less than an infinite decreasing geometric progression whose

first term is IGV) 8 and whose ratio is fo. From the formula

1 - r

i

it follows that the remainder is less than
72 • 109

To calculate log 12, log 13, ••• we could now keep a = 10 and let

x = 12, 13, ••• successively, but in order to secure rapid convergence it

is better to change the value of a, choosing for a the nearest number
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whose logarithm has been found. Thus, in computing log 12 we can

use either of the two series

log 12 = log io + a - KA) 2+ K&Y - -.

log 12 = log li + A - KA) 2 + Kt1
!)

3 - -

;

but it will be found that five terms of the second furnish as close an

approximation as nine terms of the first. The practical advantage

of the step-by-step process will depend on how many of the intermedi-

ate values we actually require. If we are given log 10 and wish to

compute log 15, it may be easier to compute the latter directly with-

out determining the intermediate values.

Ex. 2. Develop f(x) = xs — 2 x1 + 5 x — 7 in powers of x — 1 and

use the result to compute/(1.02),/(1.01),/(.99),/(.98).

Ex. 3. Develop 3 y
2 — 14 y + 7 in powers of y — 2.

Ex. 4. Expand sin x in powers of x — a and use the result to com-

pute sin 31°.

Let a = 30°, x = 31°. In the formula

sin x = sin a + cos a(x - a)-^^(x - a) 2 - ^^ (x - a) 3 •»,

the difference x — a becomes 1° or .001745 radians, and the coefficients

of its various powers are all known ; since sin a = .5, cos a = .866025 the

work is now reduced to numerical calculation in which three terms

are sufficient to obtain the result correct to six places of decimals. In

general, to calculate sin x or cos x, take for a the nearest value for

which sin a, cos a are known.

The expansion of a function f(x) in a series of ascending

powers of x can be obtained at once from formula (2) by giv-

ing a the particular value zero. The series then becomes

A*)=A0) + /-(0)x +q|i^ + ... +^^ + .... (3)

EL. CALC.— 10
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Ex. 5. Expand sin x in powers of x, and find the interval of con-

vergence of the series.

Efeve /0) = sin x, /(0) = 0,

f(x) =cosx, /'(()) =1,

f"(x) = - sin a;, /"(0) = 0,

/'"(*) = - cos*, /"'(())= -1

f"(x) = sinx, /iv(0)=0,

/v(ar) = cos x, /v (0) = 1,

Hence, by (3),

+ 1 • x + • x2 - i. x-
3 + • x4 +

o

!

thus the required development is

sin a: = a; xs
H x5 x7 + ••• + -^—2!!— a:

2"-1 + ....

3! 5! 7! (2w-l)!

To find the interval of convergence of the series, use the method

of Art. 74. The ratio of un+1 to un is

un+\_ a>+1 Z2"" 1 x2

«n (2n + l)! (2n-l)l (2n + l)2n

This ratio approaches the limit zero, when n becomes infinite, how-

ever large may be the fixed value assigned to x. This limit being less

than unity, the series is convergent for any finite value of x, and

hence the interval of convergence is from — oo to -f oo.

The preceding series may be used to compute the numerical value

of sin x for any given value of x. It is rapidly convergent when x is

small. Take, for example, x = .5 radians. Then

sin(.5)_.o-— +2>3>4>5 2.3.^.5.6.7+ ->
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= .5000000

- .0208333

+ .0002604

- .0000015

+ .0000000

sin (.5) = .4791256 ••

Show that the ratio of u
5

to u
A

is 2 \-g ; and hence that the error in

stopping at u
4

is numerically less than u
t [^i? + Ciis)^ ••*]» ^na^

is, < ?fa u
4
.

When x is not small, it is better to use the more general series in

powers of x — a.

Ex. 6. Show that the development of cos x is

cosx = l - JL + ±--±- + ... +i ii ± + ....

2! 4! 6! (2n-2)! '

and that the interval of convergence is from — oo to + oo.

Ex. 7. Develop the exponential functions ax
, ex .

Here

/(*) = «*, /'(*)=a*loga, /"(*) = a*(log «) 2
, .», /*>(*) =a-(loga)»;

hence /(0)=l; /'(0)=log a,/"(0) = (loga)2, ...,/W(0) = (log a)»,

and a-H (log a)* +^ a)V + ... + (log q)V + ....•2! n

!

As a special case, put a = e.

Then log a = log e = 1,

and ex^i + ^ + rL + rL-f ... +£!+ ....

2.! 3! n!

These series are convergent for every finite value of x.

Ex. 8. Compute 10* when x = .1.

Ex. 9. Compute 10* when r = 2.01.
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Ex. 10. Defining the hyperbolic cosine and the hyperbolic sine

by the equations

cosh x = \(ex + e x
), sinh x = \{ex — e~x

),

prove — cosh x = sinh x, — sinh x = cosh x,
dx dx

cosh 0=1, sinh 0=0; and hence expand cosh x and sinh x in powers

of x. Verify that cosh x + sinh x = ex , and cosh x — sinh x = e~ x
.

Compute cosh 2 and sinh 2 to four decimal places. Show that the

error made in stopping the series at any term is much less than the

last term used.

78. Taylor's series. If a function of the sum of two num-

bers a and x is given, f(a + x), it is frequently desir-

able to expand the function in powers of one of them,

say x.

In the function /(a + x), a is to be regarded as constant, so

that, considered as a function of x, it may be expanded by

formula (3) of the preceding article. In that formula, the

constant term in the expansion is the value which the func-

tion has when x is made equal to zero, hence the first term

in the expansion of f(a 4- x) may be written /(a). In the

same manner the coefficients of the successive powers of x

are the corresponding derivatives of f(a + x) as to x, in which

x is put equal to zero after the differentiation has been per-

formed. The expansion may therefore be written

f(a + x) = f(a) + f(a)x +£^r-x2 + ••• + f<
[
a)

oc
n + ••••

9.
' m T

This series, from the name of its discoverer, is known as

Taylor }

s series, and the theorem expressed by the formula is

known as Taylor's theorem.
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Ex. 1. Expand sin (a + x) in powers of x.

Here f(a + x) — sin (a + x),

hence f(a) = sin a,

and f'(a ) — cos a,

Hence sin (a + x) = sin a + cos a • x - si^x2 _ cos_a 3
v '

2! 3!

Ex. 2. Compute sin 61°, by putting a = 60°.

EXERCISES

1. Expand tan x in powers of x. Obtain three terms.

2. Compare the expansion of tan x with the quotient derived by

dividing the series for sin x by that for cos x.

3. Find a limit for the error which occurs in replacing cos x by

the first three terms of its expansion in powers of x when x = \ of a

radian.

4. Prove that log (x + Vl + x2
) = x - -±— + -^- •

2-32-4

5. Provelogc'os^-^-^- 1-^6
-?!^!....

8
2 4! 6! 8!

6. Compute sin 1° cdrrect to six places of decimals.

7. Expand Vl — x2 in powers of x, and compare with the expan-

sion by the binomial theorem.

8. Expand cos x in powers of x — -.

9. Expand ex+h in powers of h.

10. Arrange 3 x3 — 5 x2 + 8 x — 5 in powers of x — 2.

11. Expand log (x + K) in powers of h.

12. Arrange x4 — 1 in powers of x + 1.

X"~N w ! Cl
n~ rXr

13. Prove the binomial theorem (a + x) n = an + ••• = x,
-

7~, \T-

r=0 v J

Find the form of the series when n is not an integer, and determine

the interval of convergence.
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14. Find V12G = V125 + 1 = 5 vl + T^3 to three places of deci-

mals by the binomial theorem.

15. Find S^Lm

16. Calculate log 31.

17. What is the greatest value of m that will permit the approxi-

mation (1 + m) 4 = 1 + 4 m with an error not exceeding .001 ?

18. Expand - in powers of x — 1 and find the interval of con-
x

vergence.

79. Rolle's theorem. By Art. 76 a series can be the correct

representation of its generating function only when the re-

mainder after n terms can be made as small as desired by

taking n large enough. Before obtaining the form of this

remainder it is necessary to introduce the following lemma.

Rolle's theorem. If f(x) and its first derivative are continu-

ous for all values of x between a and b, and if f(a), f(b) both

vanish, then f'(x) will vanish for some value of x between a

and b.
*

The proof follows immediately from the theorem of mean

value (Art. 39). See Figure 41.

80. Form of remainder in Maclaurin's series. Let the re-

mainder after n terms be de-

noted by Bn (x, a), which is

a function of x and a as well

as of n. Since each of the

succeeding terms is divisible

by (x — a)n, Rn may be con-

Fig. 41 veniently written in the form

Rn (x, a) = ^—pi-
<f>

(x, a).
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The problem is now to determine <£(#, a) so that the

relation

f(x)=f(a)+f(a)(x-a)+^(x- af+ .'..

+ 7 \f,
(x - a)H J + yv

'
' (z - ci)

n
(1)

(n — 1)1 n\

may be an algebraic identity, in which the right-hand mem-
ber contains only the first n terms of the series, with the

remainder after n terms. Thus, by transposing,

f(x) _/(«)_/(«)(» - a) -fJ£p(x-ay - -

_/->)
(a! _ Bw_ »fe«) (a _ o).= o. (2)

(h-1)!
V ;

n! ^
; w

Let a new function, F(z), be defined as follows:

F(z) =f(x) -/(*) -f\z){x - z)-£& (x - zf - -.

-O^**-'^
1-*^*-*- (3)

This function F(z) vanishes when z—x, as is seen by

inspection, and it also vanishes when z = a, since it then

becomes identical with the left-hand member of (2) ; hence,

by Rolle's theorem, its derivative F'(z) vanishes for some

value of z between x and a, say zv But

F\z) = -/(«) -|-/(2) -/»(»)(* - »)+/"(*)(» -«)-...

(n-l)! V ' ^(n-l)!
1
- '
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These terms cancel each other in pairs except the last two

;

hence _x

Since F'(z) vanishes when z = z1}
it follows that

4>(x, a) =/<»>&). (4)

In this expression zx lies between x and a, and may thus be

represented byJ
Zl = a + 0(x- a),

where 6 is a positive proper fraction. Hence from (4)

4>(x, a)=f»[a + d(x-a)],

and Rn{x, a) =/
w

l> + fl(*-«)
1 {x_ o)-.•

The complete form of the expansion of f(x) is then

/(a>) =/(«) + /»(«) fas- a) +^f^ (oc-a) 2 + -

+f"^ (*-a)»-* +/
(WWe(g--«)) («-«)". (5)

(n — 1); w!

in which n is any positive integer. The series may be carried

to any desired number of terms by increasing n, and the last

term in (5) gives the remainder (or error) after the first n

terms of the series. The symbol /
(n)

(« 4- (x — a)) indicates

that f(x) is to be differentiated n times with regard to x, and

that x is then to be replaced by a + 0(x — a).

* This form of the remainder was found by Lagrange (1736-1813), who pub-

lished it in the Memoires de l'Academie des Sciences a Berlin, 1772.
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81. Another expression for the remainder. Instead of putting

RJx, a) in the form
(x _ a\»

r-^fo a),
n\

it is sometimes convenient to write it

Rn(x, a) = (x — a) ^(#, a).

Proceeding as before, we find the expression for F'(z),

(w-1)!

In order for this to vanish when z = z
lf

it is necessary that

(n-l)l

in which zt = a+ 0(x — a), x — z
l
= (x — a)(l — 0).

Hence *fe a) =/
(">(a + <?(*- a))

(1 _ e)
.-

1(a
. _ a)

»-.
;

(n-1)!

and !}„(*, «)=(!- g)-'/'"y^- a
) >(s - a)".*

An example of the use of this form of remainder is fur-

nished by the series for log x in powers of x— a, when x—a
is negative, and also in the expansion of (a -+- #)

m
-

Ex. 1. Find the interval of equivalence for the development of

log x in powers of x — a, when a is a positive number.

Here, from Art. 77, Ex. 1,

Xn

hence /<»>(a f 6(x -a)) = (-l)n-i (">- 1) »

(a + 0(x — a))'*

and, by Art. 80,

^ fl) = ^--'c*-*)- = (-D-1

r *-« r.
V

' n(a+0{x-a)) n n la + 6(x-a)\

* This form of the remainder was found by Cauchy (1789-1857), and first

published in his "Le<,:ons sur le calcul infinitesimal," 1826.
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First let x — a be positive. Then when it lies between and a, it

is numerically less than a + 0(x - a), since is a positive proper

fraction ; hence when n = oo

x ~ a T = 0, and RJx, a) = 0.

Again, when x — a is negative and numerically less than a, the

second form of the remainder must be employed. As before

hence Rn (x, a) = (1 - 0)«-i
. f"

1^"^
= (l_0)»-i. -(«-')'

[a-(9(a-.r)]»

t

(a — x) — 0{a — x) l "-1 a — x

a -0(a - x) J ' a - ${a - x)'

The factor within the brackets is numerically less than 1, hence

the (n — l)th power can be made less than any given number, by tak-

ing n large enough. This is true for all values of x between and a.

Therefore, log x and its development in powers of x — a are equiva-

lent within the interval of convergence of the series, that is, for all

values of x between and 2 a.

_i
Ex. 2. Show that the development of x ? in positive powers of

x — a holds for all values of x that make the series convergent ; that

is, when, a; lies between and 2 a.

If the function is expanded in powers of x, the complete

form will be

ffljj. , /'-"(0)^-i/(*)=/(0)+/'(0)*+-^^+ ... +^~y;*"

+/^M*. (1)
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for the first form of remainder, and

/(*)=/(<>) +/'(0)* + /^-'+ ... +M^-i

£W(1 _ gy-l
. x, (2)

for the second form of remainder.

Similarly, the complete form of Taylor's series (Art. 78)

becomes

0| (n-l)l

/»>(q + flaQ
,

for the first form of remainder, and

/(a + x) =f(a) +f(a)x + -^z2 + • •• +
/•"«„

2 , ,

/'-"(a) „„-,
<> | (»-l)

(4)

for the second form of remainder.

These forms are of no value for numerical computation

unless f(n) (x) can be determined, but may sometimes be used

to advantage to obtain a maximum error, corresponding to

small values of n. It should be observed that when n = 1,

the theorem of mean value results. (Art. 39.)

Ex. 3. Obtain the limit of error in retaining but two non-vanish-

ing terms in the expansion of log (x + Vl + x'1) when x = \.

log (x + viTi"2)

=

x- -*. +P-?/
- n

-
?/

;

r

wherein y = 6x.
LV J J

24
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The next step is to obtain the largest and the smallest value which

the expression in brackets assumes for values of y within the interval

to \. For this purpose, consider the function

„- 3.v(3-2.y*)

(1 + y*)!
^

We find that — is positive for all values of y between y = and y = \;
dy

hence u has its largest value when y = J, and the corresponding value

of the last term is .000284.

Ex. 4. How many terms should be used in the expansion of ex in

powers of x to insure a result correct to four places of decimals when

x = |?

Ex. 5. In the expansion of logio (1 + x) in powers of x how many

terms should be used in order to obtain the value of logio (1 • 8) cor-

rect to 5 decimals ?



CHAPTER XI

INDETERMINATE FORMS

82. Hitherto the values of a given function f(x), corresponding

to assigned values of the variable x, have been obtained by direct

substitution. The function may, however, involve the variable

in such a way that for certain values of the latter the correspond-

ing values of the function cannot be found by mere substitution.

For example, the function

sin x

for the value x = 0, assumes the form -, and the correspond-

ing value of the function is thus not directly determined. In

such a case the expression for the function is said to assume

an indeterminate form for the assigned value of the variable.

The example just given illustrates the indeterminateness of

most frequent occurrence; namely, that in which the given

function is the quotient of two other functions that vanish for

the same value of the variable.

Thus if f(x) = *M,

and if, when x takes the special value a, the functions <f>(x)

and \p(x) both vanish, then

J K
' *(a)

is indeterminate in form, and cannot be rendered determinate

without further transformation.

157
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83. Indeterminate forms may have determinate values. A
case has already been noticed (Art. 2) in which an expression

that assumes the form - for a certain value of its variable takes

a definite value, dependent upon the law of variation of the

function in the vicinity of the assigned value of the variable.

As another example, consider the function

x2 — a2

y = x— a

If this relation between x and y is written in the forms

y(x — a)=x2 — a2
,

(x — a)(y — x — a) = 0,

it will be seen that it can be represented graphically, as in Fig.

42, by the pair of lines

x — a = 0,

y — x — a = 0.

Hence when x has the value of a, there

is an indefinite number of corresponding

points on the locus, all situated on the

line x = a; and accordingly for this

value of x the function y may have any

value whatever, and is therefore indeterminate.

When x has any value different from a, the corresponding

value of y is determined from the equation y = x-\-a. Now,

of the infinite number of different values of y corresponding

to x = a, there is one particular value AP which is continuous

with the series of values taken by y when x takes successive

values in the vicinity of x = a. This may be called the de-

terminate value of y when x — a. It is obtained by putting

x = a in the equation y = x + a, and is therefore y = 2 a.

Fig. 42
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This result may be stated without reference to a locus as

follows. When x = a, the function

x— a

is indeterminate, and has an infinite number of different

values ; but among these values there is one determinate value

which is continuous with the series of values taken by the

function as x increases through the value a ; this determinate

or singular value may then be defined by

liui xr— a2

^

x=a x — a

In evaluating this limit the common factor x— a may be re-

moved from numerator and denominator, since this factor is

not zero while x is different from a; hence the determinate

value of the function is

lim a? + « _o„

Ex. 1. Find the determinate value, when x = 1, of the function

x3 + 2 x 2 -3x
3 xb _ 3 xa _ x + i

'

which, at the limit, takes the form —

This expression may be written in the form

(x* + Zx)(z- 1)

(3s3 - 1)0- 1)'

which reduces to
x +

'
x

• When x = 1, this becomes - = 2.
3 x2 - 1 2

Ex. 2. Evaluate the expression

x8 + ax2 + a2x 4- a 3

,
x8 4- b2x + az2 + a&2

when x = — a.
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Ex. 3. Determine the value of

x8 - 7 x2 + 3 x + 14

x3 + 3 x2 - 17 x + 14
when x = 2.

Ex. 4. Evaluate -—— — when x = 0.

(Multiply both numerator and denominator by a -f Va2 — x2
.)

84. Evaluation by development. In some cases the common

vanishing factor can be best removed after expansion in series.

Ex. 1. Consider the function mentioned in Art. 82,

e* - e~*

sin x

When numerator and denominator are developed in powers of x,

the expression becomes

21 31^ V 21 31 /

*-£+...
3!

2, + ^+... 2+f+...
x3

, - X2
.— ST+-

1 -« + -

which has the determinate value 2, when x takes the value zero.

Ex. 2. As another example, evaluate, when x= 0, the function

x — sin-1
a:

sin8 x

By development it becomes

«
+

XJ +

Removing the common factor, and then putting x = 0, we obtain
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In these two examples the assigned value of x, for which the

indeterininateness occurs, is zero, and the developments are made

in powers of x. If the assigned value of x is some other number,

as a, then the development should be made in powers of x — a.

Ex. 3. Evaluate, when x = -, the function
2

COS X

1 — sin x

ITBy putting x — - = h, x = - + h, the expression becomes

eo.(=+»)
.

-»+£-... _l+£
\ 2 / — sm 7i 6 6

. . hr
,

,\ 1 -cos A A 2 A4
,

/i A 8
,

1 — sin —\- h) — h ••• h •••

\2 / 2 24 2 24^

which becomes infinite when 7* = ; that is, when x = -•
2

TJ lim cos x
Hence

. m
- = ± oo,

x=fl-siuo: '

according as h approaches zero from the negative or positive side.

85. Evaluation by Differentiation. Let the given function

be of the form ^~, and suppose that /(a) = 0, cf>(a)= 0. It

is required to find ^ ^-L-i .4 x= a
<f>(x)

We assume that f(x), <j>(x) can be developed in the vicinity

of x = a, by expanding them in powers of x — a. Then

m /(«)+/'(«)(* - «)+-^(f (»- «)
2 + -

*(*)
<l>(a) + 4>'(a)(x - a)+ *!M (x - uy+ -

/•(«)(a( _ a)+^2l((
,_«)i+ ...

^«)(*-a) +^(z-a) 2+...

EL. CALC. 11
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By dividing by x — a and then letting x = a, we obtain

lim f(x)_f(a)
«-« + («) +'(o)

By hypothesis the functions f'(a), <£'(a) will both be finite.

If /'(a) = 0, <£'(a) =£ 0, then £i& = 0.
<j>(a)

lf/'(a)*0, *'(a) =0, then^ = oo.

<£(a)

If /'(a) and <£'(a) are both zero, the limiting value of J-^-l

is to be obtained by carrying Taylor's development one term

farther, removing the common factor (x — a) 2
, and then letting

f"(a)
x approach a. The result is J—~ •

Similarly, if /(a), /'(a), /"(a); </>(a), <^)'(a), <^>" (a) all vanish,

it is proved in the same manner that

lim f(x) = f'"(a)
x = a '<j>(x) <£'"(«)'

and so on, until a result is obtained that is not indeterminate

in form.

Hence the rule

:

To evaluate an expression of the form -, differentiate numer-

ator and denominator separately ; substitute the critical value of

x in their derivatives, and equate the quotient of the derivatives

to the indeterminate form.

Ex. 1. Evaluate * ~ T ^ when = 0.

Put f(0) = 1 - cos 6, <f>(0) = e*.

Then f(0) = sin 0, <f>'(0)=2$t

and /'(0) - 0, <£'(0) = 0.
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Thus, the function \ * J is also indeterminate at = 0. It is there-

9 (0)

f"({y\
fore necessary to obtain </

,,„
'

•

Accordingly, f"{6) = cos 0, p"(0) = 2,

/'(0)=1, 9"(0)=2,

hence lim 1 — cos _ 1 J

= 02
-

2
*

Ex.2. Find
x=,

lim i* + e~* + 2 cos a: — 4 lim ex — e~x — 2 sin a:

x = 4 a:
3

lim e* + e * — 2 COS X

x=0 12 a:
2

lim ex — e -* + 2 sin x

x = 24 x

lim ez + e -* + 2 cosx

x = 24

1

6'

Ex. 3. Find lim a; - siD3rcosa:
.

x = x8

Ex.4. Find
M" «, -2»'i**+»«-*.

* = 1 a:
4 - 2 a:

3 + 2 a: - 1

In this example, show that z — 1 is a factor of both numerator and

denominator.

^ _ „. , lim 3 tan x - 3 a: - a:
8

Ex. 5. Find „ . n

In applying this process to particular problems, the work

can often be shortened by evaluating a non-vanishing factor

in either numerator or denominator before performing the

differentiation.
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Ex. 6. Find ";> (»-*)' tan*
.

X == "
X

The given expression may be written

lim . tanx _ lim lim tans

= 16-1 = 16.

In general, if f(x) = *P(%)x(x)> an(^ ^ «M°0 = 0> x(a)^0,
(h (a) = 0, then ,. ., N ,,, *

llm /M = vr^^M.
* = «*(*)

XU
^>'(a)

For
lim iKx)x(x) = lim , v

.
lim </<») a) . ^!M

x = a $(x) x = a^ K
> x = a^{x) * ;

<f>'(a)

lim sin x cos 2 x
Ex. 7. Find

x = $ (2 x - tt) 2

Ex.8. Find
lim (.-3) 2 log(2 x}

>

x = 1 sin(x - 1)

EXERCISES

Evaluate the following expressions :

1.
1 - CO8ar whenx = 0. 7.

e* + e~' ~ 2 when x = 0.

2.
e*

.

e
when a; = 0. 8

tan a;- sin x cos a:

when ^_a

3.
*3 - 1 U 1when x = 1.

x- 1

4. when x = 0.
&* - 1

5.
sin ax , „

when x = 0.
sin frx

l

9. when x = 0.

tan -1
a;

10.
g*B"i*-*-* when a- = 0.

x2 + a;log (1-a:)

>. (1 4- arV» — 1 , n -.-. tan a; — sin a; , n
6. V

x ^ x ' 1 when x = 0. 11. -
Q

when x = 0.

x Xs

There are other indeterminate forms than -• They are

£,00-00,0°, r, 00°.
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86. Evaluation of the indeterminate form ®

.

GO

fix)
Let the function J

\ ' become 5°- when x = a. It is re-
<j>(x) <*>

quired to find
lim &&•

This function can be written

<K*) _1_'

which takes the form - when x = a, and can therefore be

evaluated by the preceding rule.

When x = a,— vv,

lim /(») _ lim

x = a <£(#) £ = a

1 4,\x)

*(*)_ lim [*(*)]*

1 ic = a f'(x)

lim
~"

" x — a
-/W T+'(*).

(1)

If both members are divided by
im -£-^J when this limit

is not nor co, the equation becomes

1= lim f(x) +\x)

*±<*<f>(x)f'(x)'

therefore
lim

x = a d,{x)

=/'(<0

+'(«)
(2)

This is exactly the same result as was obtained for.the form

;
hence the procedure for evaluating the indeterminate forms

-, g, is the same in both cases.^
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When the true value of ->--' is or go , equation (1) is satis-

fied, independent of the value of ,~ ; but (2) still gives the

correct value. For, suppose ™ ^w = 0. Consider the

function

which has the form °°- when a; = a, and has the determinate
GO 7

value c, which is not zero. Hence by (2)

lim fix) + c<f> (x) = /' (a) + c<f>' (a) = /' (a)
c

* = a <f>(x) 4>'(a) <j>' (a)

Therefore, by subtracting c,

lim /(a?) = /(a)
,

• £ = «<£(&) </>'(a)

If "F-fiS. =00, then "™ ^ = 0, which can be treated
x ~ a

<f>(x)
x - a

f(x)

as the previous case.

The forms • go and go-go can usually be evaluated by

putting them in one or the other of the forms already dis-

cussed. In the case of the others, in which the indetermi-

nateness appears in the exponent, the logarithm of the

function can be reduced to one of the preceding forms.

EXERCISES

Evaluate the following expressions:

1.
log si» 2 * when x = 0.

log sin x

2. !2££ ^

4.
tan x

tan 5 x
when x _ IT

5.
sec 3 a: when X _ IT

cot x sec 5 x 2

6. xs[nx when x = 0.

7. (cos ax) csc2cx when x = 0.

^n 6. xB[QX when x = 0.

3. — when x = go.
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CHAPTER XII

CONTACT AND CURVATURE

87. Order of contact. The points of intersection of the two

are found by making the two equations simultaneous ; that is,

by finding those values of x for which

Suppose x = a is one v?lue that satisfies this equation.

Then the point x = a, y = A(i) =
if; (a) is common to the curves.

If, moreover, the two curves have the same tangent at this

point, they are said to touch each other, or to have contact

with each other. The values of y and of — are thus theJ
dx

same for both curves at the point in question, which requires

that
*(«)=</<(«),

<j,\a)=4,\a).

d2v
If, in addition, the value of —" is the same for each curve

dx~
at the point, then

and the curves are said to have a contact of the second order

with each other, provided cf>'"(a) =£ i//"(a).

If <f>(a) =\f/(a), and all the derivatives up to the nth order

inclusive are equal to each other, that is, <f>'(a) = if/' (a),

<}>"(a) = i(,"(a), .-.,
cf>

(n\a) =<A
(n)

(a), but
<f>

(n+1) (a) =£ fn+1) (a),

the curves are said to have contact of the ?ith order.

167
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88. Number of conditions implied by contact. or j equation

of the curve y = <f>(x) is given, and it is requir ,. to determine

the equation of a second curve y = \\j (x) that shall have contact

of any given order with y = <f>(x) at a specified point, then,

from the definition given in the preceding article for contact

of the nth order, n -f 1 conditions must be imposed upon the

coefficients in \p(x). The required curve must therefore con-

tain at least n -f- 1 arbitrary constants in >rder to fulfill the

required conditions.

A straight line has two arbitrary constants, which can be

determined by two conditions ; accordingly a straight line can

be drawn which touches a given curve at any specified point.

For if the equation of a line is written y = mx -f b, then

dy dr.; p.

dx dx

hence, through any arbitrary point x = a on a given curve

y=cf>(x), a line can be drawn which has contact of the first

order with the curve, but which has not in general contact of

the second order; for the two conditions for first-order con-

tact are ma + 6 = <£(«),

m = <£'(«),

which are just sufficient to determine m and b.

In general no line can be drawn having contact of an order

higher than the first with a given curve at a given point ; but

there are certain special points at which this can be done.

For example, the additional condition for second-order contact

is = <f>"(a), which is satisfied when the point x = a is a

point of inflexion on the given curve y=<j>(x). (Art. 49.)

Thus the tangent at a point of inflexion on a curve has contact

of the second order with the curve.
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The equation of a circle has three independent constants.

It is therefore possible to determine a circle having contact of

the second order with a given curve at any assigned point.

The equation of a parabola has four constants, hence a

parabola can be found which has contact of the third order

with the given curve at a given point.

The general equation of a central conic has five independent

constants, hence a conic can be found which has contact of the

fourth order with a given curve at any specified point.

As in the case of the tangent line, special points may be

found for which these curves have contact of higher order.

89. Contact of odd and of even order.

Theorem. At a point where two curves have contact of an

odd order they do not cross each other; but they do cross

where they have contact of an even order.

For, let the curves y = <f>(x), y=\f/(x) have contact of the ?ith

order at the point whose abscissa is a ;
and let yx, y2 be the

ordinates of these curves at the point whose abscissa is a + h.

Then y1
= cf>(a + h), y2

=z ij,(a-\-h),

and by Taylor's theorem

Vl = *(a)+ *'(a) • h + *^) • ft
2 + • • •

+*^.». + *^«(a)+ ....

n ! (?i -f 1)

!

fc .^(o)+^(a).*+*^i.V + •

n ! (n + 1) !
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Since by hypothesis the two curves have contact of the nth

order at the point whose abscissa is a, hence

4(a) =$(a), <j>'(a)=ip' a), ..'., <y(a)= ^(a),

and yi-y^-J^ir+1(a)+ ... _ r+i
(a)_ ...

];

but this expression, when h is sufficiently diminished, has the

same sign as .,,, r „,.>
, , , v _

Hence, if n is odd, yl
— y2 does not change sign when h is

changed into — h, and thus the two curves do not cross each

other at the common point. On the other hand, if n is even,

ll\
— V* changes sign with 7i

;
and therefore when the contact

is of even order the curves cross each other at their common

point.

Geometrically, we may say that two curves having contact

of the nth order pass through n -\- 1 common points which

approach coincidence at the point of contact. For let y = <f>(x),

y = xf/(x) touch each other at x = a. This means that they have

two coincident points in common at (a, <f>(a)), and the condi-

tions to be satisfied are

<f>(a)=^(a), *'(a)= *'(a).

If the curves also have a point in common for x = a -f- h, then

<f>(a + h)=ip(a + h).

Expanding by Taylor's series and making use of the preced-

ing conditions, we may cancel the common factor Jr. If now

this condition is still satisfied when h approaches zero, so that

the third point of intersection approaches the position of the

two coincident ones, then we must have the further condition
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<£"(a)= \J/"(a). Thus, three coincident points of- intersection

imply contact of the second order. By repeating this argu-

ment the above theorem results.

For example, the tangent line usually lies entirely on one

side of the curve, but at a point of inflexion the tangent crosses

the curve.

Again, the circle of second-order contact crosses the curve

except at the special points noted later, in which the circle

has contact of the third order.

EXERCISES

1. Find the order of contact of the curves

4 y = x2 and y = x — 1.

2. Find the order of contact of the curves

x = y
s and x — 2 y + 1 = 0.

3. Find the order of contact of the curves

4 y = x2 — 4 and x2 — 2 y — 3 — y
2

.

4. Determine the parabola having its axis parallel to the #-axis,

which has the closest possible contact with the curve a 2y — x3 at the

point («, a). (The equation of a parabola having its axis parallel

to the y-axis is of the form

y = Ax2 + Bx + C.)

5. Determine a straight line which has contact of the second order

with the curve y = x8 - 3x2 - 9 x + 9.

6. Find the order of contact of

y = log(x — 1) and x2 — 6x + 2y + 8 =

at the point (2, 0).

7. What must be the value of a in order that the curves

y=x+l-\-a(x— l) 2 and xy = 3 x — 1

may have contact of the second order?
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8. Determine the parabola which has its axis parallel to the y-axis

and has contact of the second order with the hyperbola xy = 1 at the

point (1, 1).

9. Determine the point and order of contact of the curves

(a) y=x*, y = 6 x2 - 9 x + 4

;

(6) y = xs
, y = -Q x2 -12x-8.

10. Determine the parabola which has its axis parallel to the y-axis,

passes through the point (0, 3), and has contact of the first order

with the curve y = 2 x2 at the point (1, 2). Similarly for a parabola

having its axis parallel to the x-axis.

11. Show that the curve y = sin x has contact of the sixth order

with the curve xz
, x5

v = x*
6 120

at the origin. Show that y = sin x, y = sinh x, have contact of the

second order at the origin. Draw these curves.

12. Find the order of contact of the curves y = cos x, y = cosh x

at the point (0, 1). Sketch the curves.

13. Find the order of contact at the origin of the curves

, , , _ sinh x
y = tan x, y = tanh x = .

cosh x

90. Circle of curvature. The circle that has contact of the

closest order with a given curve at a specified point is called

the osculating circle or circle of curvature of the curve at the

given point. The radius of this circle is called the radius of

curvature, and its center is called the center of curvature at the

assigned point.

91. Length of radius of curvature; coordinates of center of

curvature. Let the equation of a circle be

(X-ay + (Y-pf = R\ (1)

in which R is the radius, and a, ft are the coordinates of the

center, the current coordinates being denoted by X, Yto dis-
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tinguish them from the coordinates of a point on the given

curve.

It is required to determine R, a, /?, so that this circle may

have contact of the second order with the given curve at the

point (x, y).

From (1), by successive differentiation, we deduce

(X-o)+(F-/8)g=0,

\dX K H'dX2

(2)

If the circle (1) has contact of the second order at the point

(x, y) with the given curve, then when X= x it is necessary

that

dY= c]y d2 Y = d2
y

dX dx dX 2 dx2

'

(3)

Substituting these expressions in (2), we obtain

dy(x- a) +(3,-^)^= 0,

whence

y-P-
H%

dx2

dy

dxx~ a= — L
+
(D"

<Py

dx*

(4)

(5)

and finally, by substitution in (1),

R.MIT)
dx2

(6)
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Ex. 1. For the curve y = sin x, show that a = x-\- cot x(l + cos2 x),
s

j3 = — 2 cos a: esc x, it = — (1 + cos'2 x) 2 esc x. Find the numerical

values of a and B when a: = 0, — , — , — , and locate the correspondingr
6 3 2

points («, /3) on a drawing. Sketch roughly the path of this point

as x varies. Write the equation of the osculating circle for the point

x = -
, and for x = -. Draw these circles.

3 2

Ex. 2. For the curve y = xs
, find a, /?, R in terms of x. Compute

their numerical values at x — 1, .7, .5, .3, 0. Show that i? is a mini-

mum when x — —— = .39 •••, and that the value of R is .57 ••••

92. Limiting intersection of normals. Let P= (#1? y-^) and

P' = (a?2, y2 ) be Wo points on a given curve f(x, y) = 0. The

equations of the normals at these points are

(a
._ a.

2) + (2/
_

2/2)^? = 0<
d#2

If («', /?') is the point of intersection of these two lines, then

dxx

(^_ iK2) + (/3
'_

2/2)^ == 0.

Now consider the function if/(x) of a: denned by the equations

f(x) = (x- a') + (y- /?') £, f(x, y) = 0.

Since i/a(^
1)
= and ^(#2) = 0, hence by Rolle's theorem

(Art. 79) it follows that

t'(x) = 0,
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in which x is defined by the inequalities

U/j <^, X <C X2 >

Hence a', ft'
may be determined by the simultaneous

equations
^(^) = 0, f(5) = 0.

When P' = (x2, y2) approaches coincidence with the point

P=(xx, yx), then if/' (x) = i// (a;,), and therefore from (4), the

point («', /8') becomes the center of curvature, hence

:

The center of curvature at a point Pon a curve is the limiting

position of the point of intersection of the normal at P with the

normal at the point P', when P' approaches the position of P.

93. Direction of radius of curvature. Since, at any point P

on the given curve, the value of -* is the same for the curve
dx

and the osculating circle for that point, it follows that they

have the same tangent and normal at P, and hence that the

radius of curvature coincides with the normal. Again, since

the value of — is the same for both curves at P, it follows
dx2

from Art. 50, that they have the same direction of bending

at that point, and hence that the center of curvature lies on

the concave side of the given curve (Fig. 43).

It follows from this fact and Art. 87 that the osculating

circle is the limiting position of a circle passing through three

points on the curve when these points move into coincidence.

The radius of curvature is usually regarded as positive or

negative according as the bending of the curve is positive or

d2v
negative (Art. 49), that is, according as the value of —-~ is

ctx~

positive or negative ; hence, in the expression for R, the radi-

cal in the numerator is always to be given the positive sign.
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The sign of R changes as the point P passes through a point

of inflexion on the given curve (Fig. 44). It is evident from

the figure that in this case R passes through an infinite value

;

Fig. 43 Fig. 44

for the circle through the points N, P, Q approaches coinci-

dence with the inflexional tangent when N and Q approach

coincidence with P, and the center of this circle at the same

time passes to infinity.

94. Total curvature of a given arc ; average curvature. The

total curvature of an arc PQ (Fig. 45) in which the bending

is in one direction, is the angle through

which the tangent swings as the point

of contact moves from the initial point

P to the terminal point Q ;
or, in other

words, it is the angle between the tan-

gents at P and Q, measured from the

former to the latter. Thus the total

curvature of a given arc is positive or negative according as

the bending is in the positive or negative direction of rotation.

The total curvature of an arc divided by the length of the

arc is called the average curvature of the arc. If the length of

Fig. 45



CONTACT AND CURVATURE 177

the arc PQ is As centimeters, and if its total curvature is A<£

radians, then its average curvature is —— radians per centimeter.
As

95. Measure of curvature at a given point. The measure of

the curvature of a given curve at a given point P is the limit

which the average curvature of the arc PQ approaches when

the point Q approaches coincidence with P.

Since the average curvature of the arc PQ is —— , the
As

measure of the curvature at the point P is

lim A<£ _ dcf>

As=0 As d

and may be regarded as the rate of deflection of the arc from

the tangent estimated per unit of length ; or, as the ratio of

the angular velocity of the tangent to the linear velocity of the

point of contact.

To express k in terms of x, y, and the derivatives of y, we

observe that

whence

and

tan <£ =

dx
'

* =

dx

d<f>_

ds ds \ dxj

dx\ dxj ds

<l
2
y

dx2 1

\dxj dx

cPy

defy dx2

K
~ds

=

Mtw
therefore k =^ = "^

7 9
• [Art. 41.

EL. CALC.— 12
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96. Curvature of an arc of a circle. In the case of a circular

arc the normals are radii ;

*

hence As = r.A0, ^ = -, (1)
As r

and therefore k = -.
r

It follows that the average curvature of all arcs of the same

circle is constant and equal to - radians per unit of length.
r

For example, in a circle of 2 feet radius the total curvature

of an arc of 3 feet is § = 1.5 radians, and the average curva-

ture is .5 radian per foot.

It also follows from (1) that in different circles, arcs of the

same length have a total curvature inversely proportional to

their radii.

Thus on a circumference of 1 meter radius, an arc of 5 decimeters

has a total curvature of .5 radian, and an average curvature of .1

radian per decimeter ; but on a circumference of half a meter radius,

the same length of arc has a total curvature of 1 radian and an

average curvature of .2 radian per decimeter.

97. Curvature of osculating circle. A curve and its osculat-

ing circle at P have the same measure of curvature at that

point.

For, let k, k' be their respective measures of curvature at

the point of contact (x, y). Then from Art. 95,

&y
dx2

\>+m\
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But this is the reciprocal of the expression for the radius of

curvature (Eq. (6), p. 173) ; hence

1
K = •

R

That is : the measure of curvature k at a point P is the recipro-

cal of the radius of curvature R for that point. Since a curve

and its osculating circle have the same radius of curvature

(Art. 90) at their point of contact, it follows from this result

that the measure of curvature is also the same for both; *=*'.

It is on account of this property that the osculating circle

is called the circle of curvature. This is sometimes used as

the denning property of the circle of curvature. The radius

of curvature at P would then be denned as the radius of the

circle whose measure of curvature is the same as that of the

given curve at the point P. Its value, as found from Art. 95

and Art. 96, accords with that given in Art. 91.

EXERCISES

1. Find the radius of curvature of the curve y
2 = 4 ax at the origin.

2. Find the radius of curvature of the curve y
s + xz + a(x2+ y

2
)

= cfiy at the origin.

3. Find the radius of curvature of the curve ahj — bxz + cx2y at

the origin.

Find the center and the radius of curvature for each of the following

curves at the point (x, y) and their numerical values at the special

point indicated. Find where the curvature is greatest and least on

each curve.

4. Rectangular hyperbola x$ = m2 at (m, m).

5. Hyperbola — - -^ = 1 at (a, 0).
a2 b2
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6. General parabola an
~ xy = xn at (a, a).

7. Parabola Vx + Vy = Va at (a, 0).

1 2 2

8. Hypocycloid x 3
-f y

s = of3
" at the point at which x = y.

9. Cissoid y" a,t x = a.

10. Catenary y—-(e a _j_ e <*) at £ = 0.

11. In what points of the curve y = x3 is the curvature greatest ?

98. Direct derivation of the expressions for k and R in polar

coordinates. Using the notation of Art. 58, we have

hence

But

_d$_dB_
~ ds~ ds

dO

dO

ds

dO

('+2)

'%

tan^ = p— ,
^=tan _1

dp
P_

dp

dO

(1)

[Art. 44.

therefore, by differentiating as to and reducing, we obtain

'dp^ 2

dij/ _ \d6

d0~
P
2 +(IT

'
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which, substituted in (1), gives

HUT
Since k = — , it follows that

H

R = Mm
f
j

*d02
+ 2

(U
This result should be compared with that of Art. 72.

When u = - is taken as dependent variable, the expres-

P
sion for k assumes the simpler form

K =

»r
Since at a point of inflexion k vanishes and changes sign,

hence the condition for a point of inflexion, expressed in polar

72

coordinates, is that u -\ shall vanish and change sign.
cW

EXERCISES

Find the radius of curvature for each of the following curves

:

1. p = a . 3. p = 2 a cos $ - a. 5. p2 cos 2 = a2 .

2. p
2 = a2 cos 2 6. 4. p cos2

J $ = a. 6. p = 2 a(l - cos 0)

.

7. P = a.
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EVOLUTES AND INVOLUTES

99. Definition of an evolute. When the point P moves along

the given curve, the center of curvature C describes another

curve which is called the evolute of the first.

Let f(x, y) = be the equation of the given curve. Then

the equation of the locus described by the point C is found by

eliminating x and y from the three equations

x— a

dy

dx
i+(&

\dx

dx2

*-p-—it

'

dx2

and thus obtaining a relation between a, /3, the coordinates of

the center of curvature.

No general process of elimination can be given ; the method

to be adopted depends upon the form of the given equation

/(*,y) = o.

Even when the elimination cannot be performed, the evolute

can be traced from point to point by computing successive

values of (a, /3) corresponding to successive values of (x
f y).

Ex. 1. Find the evolute of the parabola ?/
2 = 4 px.

Since «=2pW, ^ =»H <?t> = _ M*-!

,

dx dx2 2

hence x — a = — p^x~^(l + px~ *)2 p~?x% — — 2 (x + p),

and y - p = (1 + px~ x )2 p"~W = 2(p~%x% + pW) ;

therefore a = 2p + 3 a:, ft
= — 2 p*x*.
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Fig. 46

The result of eliminating x between the last two equations is

i.e., 4(«- 2 Py = 27 p/3
2

,

which is tho equation of the evolute of the parabola, a, {3 being the

current coordinates.

Use the expressions for a and /3 to compute their values, and to

locate the points («, /3) when x — 0,
P

Ex. 2. Find the evolute of the ellipse

-2 ?<2

Here

dx2

ir-

x ir

a 2 b2
(1)

y_ .dy = o 'hi- - b2X

b2 dx dx

dy

dx -ft2 / , b2x2
\ -b2

, 2 „
,

, 2 „. -ft*

r a # \ a 2y / a4#° a 2
//
3
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whence

y H aW \ b* a>Y
J

\ ¥ by-

Therefore - (3 = ^ ~ b '

V - (2)
b*

Similarly, a = a—^x^. (3)

On eliminating x, y between (1), (2), (3), the equation of the

locus described by (a, (3) is

(aa)f + (bp)i = (a2 - 62)l (Fig. 51)

Use (2), (3) to locate various values of («, /3), and trace the evolute.

Take a = 2b; a =—.
3

100. Properties of the evolute. The evolute has two im-

portant properties that will now be established.

I. The normal to the curve is tangent to the evolute. The

relations connecting the coordinates (a, ft) of the center of

curvature with the coordinates (x, y) of the corresponding

point on the curve are, by Art. 91,

x- a + (y-/J)^ = 0, (1)

1+ (!)'+ (*-«g=°- <2>

By differentiating (1) as to x, considering a, (3, y as functions

of*,weobtain
+ ^_^_<L«_M = . (3)

\dxj
K HJ

dx2 dx dx dx
w

Subtracting (3) from (2), we obtain

da +
dgdy =

^ ^
dx dx dx

, dB dx
whence — = — — •

da dy
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But
c
-l=- is the slope of the tangent to the evolute at (a, /?),
da

and is the slope of the normal to the given curve at
dy

(x, y). Hence these lines have the

same slope ; but they pass through the

same point (a, f3), therefore they are

coincident.

II. TJie difference between two radii '

of curvature of the given curve, which

touch the evolute at the points Clt C2
Fig. 47

(Fig. 47), is equal to the arc CXC2 of the evolute.

Since R is the distance between the points (x, y), (a, (3),

hence (aj - a) 2 + (y - /3)
2 = Br. (5)

When the point (x, y) moves along the given curve, the

point («, /?) moves along the evolute, and thus a, /?, R, y, are

all functions of x.

Differentiation of (5) as to x gives

(-^-SVMs-i?)-*^ (6)

hence, subtracting (6) from (1), we obtain

(X- a)p +(y-f})f= -lt™. (7)
dx dx dx

Again, from (1) and (4),

da d(3

dx dx

x — a y — (3

(8)
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Hence, each of these fractions is equal to

4
da\2

,fdg\
2

do-

dx) \dxj dx

V(a-a) 2 + (^=^
_± ^'

in which <r is the arc of the evolute. (Compare Art. 41.)

Next, multiplying numerator and denominator of the first

member of (8) by x — a, and those of the second member by

y — /?, and combining new numerators and denominators, we

find that each of the fractions in (8) is equal to

(x-af + iy-py

which equals —
R 0B

dx

R2
by (7) and (5).

By combining with (9), we obtain

d<r_ dR
dx dx'

that is, ^(cr±R)=0.
dx

Therefore <r ± R = constant, (10)

wherein o- is measured from a fixed point A on the evolute.

Now, let (?!, C 2 be the centers of curvature for the points

Ply P2 on the given curve ; let PXCX
= 7^, P2C2 = R2 ;

and let

the arcs ACX , AC2 be denoted by p-
lt <r2 . Then

<t1 ±R1
= <t2 ± R2 , by (10)

;

that is a-1
— (T2=± (R2

— R
} ) ;

hence, arc CXC2 — R2
— Rv (11)
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Fig. 48

Thus, in Fig. 48,

P2C2+CA = PSC3, etc.

Hence, if a thread is wrapped

around the eve-lute, and then is un-

wound, the free end of it can be ^N

made to trace out the original curve.

From this property the locus of the

centers of curvature of a given

curve is called the evolute of that curve, and the latter is called

the involute of the former.

When the string is unwound, each point of it describes a

different involute; hence, any curve has an infinite number

of involutes, but only one. evolute.

Any two of these involutes intercept a constant distance

on their common normal, and are called parallel curves on

account of this property.

Ex. Find the length of that part of the evolute of the parab-

ola which lies inside the curve.

From Fig. 46 the required length is twice the difference between

the tangents C
3
P

3
and P

Q
C , both of which are normals to the

parabola.

To find the coordinates of the point P
3 , write the equation of the

tangent to the evolute at C
3 , and find the other point at which it

intersects the parabola.

The coordinates of C
3 , the point of intersection of the two curves,

are (8p, 4joV2), and the equation of the tangent at C3
is

2x -V2y - Sp = 0.

This tangent intersects the parabola at the point (2p, — 2V2 />),

which is Po.
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The value of the radius of curvature is
~{x ~*~P)

f
hence P C =2p,

Vp
P3C3 = GV3p, hence the arc C CS

is 2p(3V3 - 1), and the required

length of the evolute is therefore 4jt>(3V3 — 1).

EXERCISES

Find the coordinates of the center of curvature for each of the

following curves

:

1. x2 + y
2 = a2

. 3. y3 ^ a2x.

2. x = a log
a + ^a

'2 ~ y2 - Va2 - y
2
. 4. y=-^(e

a + e «).

Find the equations of the evolutes of the following curves

:

5. xy = a2
. 6. a 2

y
2 - b2x2 = - a 2b 2

. 7. x% + y* = ah

8. Show that the curvature of an ellipse is a minimum at the end

of the minor axis, and that the osculating circle at this point has con-

tact of the third order with the curve.

Fia. 49

This circle of curvature must be entirely outside the ellipse

(Fig. 49). For, consider two points Pi, P2 , one on each side of B,

the end of the minor axis. At these points the curvature is greater
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than at B, hence these points must be farther from the tangent at B
than the circle of curvature, which has everywhere the same curva-

ture as at B.

9. Similarly, show that the curvature at A, the end of the major

axis, is a maximum, and that the circle of curvature at A lies entirely

within the ellipse (Fig. 49).

10. Show how to sketch the circle of curvature for points between

A and B. The circle of curvature for points between A and B has

three coincident points in common with the ellipse (Art. 93), hence

the circle crosses the curve (Art. 89). Let K, P, L be three points

on the arc, such that K is nearest A and L nearest B. The center

Fig. 50

of curvature for P lies on the normal to P, and on the concave side

of the curve. The circle crosses at P, lying outside of the ellipse at

K (on the side towards .4), and inside the ellipse at L; for the bend-

ing of the ellipse increases from B to P and from P to K, while the

bending (curvature) of the osculating circle remains constant

(Fig. 50).

11. Two centers of curvature lie on every normal. Prove geo-

metrically that the normals to the curve are tangent to the evolute.
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12. Show that the entire length of the evolute of the ellipse is

4 (-— — ). [From equation (11) above, take Bv R 2
as the radii of

\b a J

curvature at the extremities of the major and minor axes.]

13. If E is the center

of curvature at the vertex

A (Fig. 51), prove that

CE = ae 1
, in which e is

the eccentricity of the

ellipse; and hence that

CD, CA, CF, CE form

a geometric series whose

common ratio is e. Show

also that DA, AF, FE
form a similar series.

14. If H is the center

of curvature for B, show

that the point 77 is with-

out or within the ellipse,

according as a > or

< bV2, or according as e 2 > or < J. Sketch the evolute when b = -—-•

o

15. Show by inspection of the figure that four real normals can

be drawn to the ellipse from any point within the evolute.

16. Find the parametric equations of the evolute of the cycloid

x = a(d — sin $), y = a (I — cos 6).



CHAPTER XIII

SINGULAR POINTS

101. Definition of a singular point. If the equation f(x, y) =

is represented by a curve, the derivative -^, when it has a
cix

determinate value, measures the slope of the tangent at the

point (x, y). There may be certain points on the curve, how-

ever, at which the expression for the derivative assumes an

illusory or indeterminate form ; and, in consequence, the slope

of the tangent at such a point cannot be directly determined

by the method of Art. 5. Such values of x, y are called sin-

gular values, and the corresponding points on the curve are

called singular points.

102. Determination of singular points of algebraic curves.

When the equation of the curve is rationalized and cleared of

fractions, let it take the form /(a?, y = 0.

This gives, by differentiation with regard to x, as in Art. 65,

df + dfdy^Q
dx dy dx

3f
du dr

whence
Tx= ~W'

(1)

By

In order that — may become illusory, it is therefore neces-
dx

sarytohave # = 0, ^= 0. (2)
dx dy

191
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Thus, to determine whether a given curve f(x, y) = has

singular points, put J- and f- each equal to zero and solve
dx dy

these equations for x and y.

If any pair of values of x and y, so found, satisfy the equa-

tion f(x, y) = 0, the point determined by them is a singular

point on the curve.

To determine the appearance of the curve in the vicinity

of a singular point (xlf yx), evaluate the indeterminate form

dy _ dx

dx
=
~aj

=
^

by finding the limit approached continuously by the slope of

the tangent when x = x
x, y = yv

"**

dy dx\dx
yHence

dx d fdf
dx

dx2 dx dydx

d2f
,

d*fdy

dx dy dy2dx

[Arts. 64, 85.

at the point (x
ly y{).

This equation cleared of fractions gives, to determine the

slope at (ajj, ?/i)> the quadratic

dy2 [dxj dxdy\dx) dx2 V }

This quadratic equation has in general two roots. The

only exceptions occur when simultaneously, at the point in
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in which case -^ is still indeterminate in form, and must be
dx

evaluated as before. The result of the next evaluation is a

cubic in — , which gives three values to the slope, unless all
dx

the third partial derivatives vanish simultaneously at the

singular point.

The geometric interpretation of the two roots of equation

(3) will now be given, and similar principles will apply when

the quadratic is replaced by an equation of higher degree.

The two roots of (3) are real and distinct, real and coinci-

dent, or imaginary, according as

H f a2/y d2
f d*f

\dx dyj dx2 By2

is positive, zero, or negative. These three cases will be con-

sidered separately.

103. Multiple points. First let 77 be positive. Then at the

point (x, y) for which -J- = 0, -J- = 0, there are two values of
dx dy

the slope, and hence two distinct singular tangents. It fol-

lows from this that the curve goes through the point in two

directions, or, in other words, two branches of the curve cross

at this point. Such a point is called a real double point of

the curve, or simply a node. The conditions, then, to be satis-

fied at a node (x
lf y{) are

ox
v

oyL

and H(xu yx ) > 0.

Ex. Examine for singular points the curve

3 x2 _ xy _ o f + xs -8y* = 0.

EL. CALC. — 13
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Here $f=6x-y+3x*, & = - x - 4 y - 21 v*.
dx dy

9 9

The values x = 0, y = will satisfy these three equations, hence

(0, 0) is a singular point.

Since |^=6+ Qx = 6 at (0,0),

Fig. 52

hence the equation determining the slope is, from (3),

-*a)"-«e)+-*
of which the roots are 1 and — f . It follows that (0, 0) is a double

point at which the tangents have the slopes 1, —
f.

Find the equation of the real asymptote, and the coordinates of the

finite point in which it meets the curve.

104. Cusps. Next let H=0. The two tangents are then

coincident, and there are two cases to consider. If the curve

recedes from the tangent in both directions from the point of

tangency, the singular point is called a tacnode. Two distinct

branches of the curve touch each other at this point. (See

Fig. 53.)
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If both branches of the curve recede from the tangent in

only one direction from the point of tangency, the point is

called a cusp.

Here again there are two cases to be distinguished. If the

branches recede from the point on opposite sides of the double

tangent, the cusp is said to be of the first kind ; if they recede
(

on the same side, it is called a cusp of the second kind.

The method of investigation will be illustrated by a few

examples.

. Ex. 1. f(x, y) = aY - <*
2xA + *6 = 0.

^ = -4a2z« + 6a?s ;
& = 2 a*y.

dx By

The point (0, 0) will satisfy /(x, y) = 0, $£ = 0, |^= 0; hence it
dx dy

is a singular point. Proceeding to the second derivatives, we obtain

§y = - 12 a2*2 + 30 x* = at (0, 0),
dx2

BY =
dxd/

a2/ =

o,

The two values of -* are there-

fore coincident, and each equal to Fig. 53

zero. From the form of the equation, the curve is evidently sym-
metrical with regard to both axes ; hence the point (0, 0) is a tacnode.

No part of the curve can be at a greater distance from the y-axis

than ± a, at which points -^ is infinite. The maximum value of y

corresponds tox = ± aVf. Between x = 0, x = aVj there is a point

of inflexion (Fig. 53).
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Sketch the curves obtained by giving larger and larger values to the

parameter a.

Ex.2. f(x,y) = y*-x* = 0;

dx~
6X

'

dy-
2y'

Hence the point (0, 0) is a singular point.

Further, ^ = - 6a: = at (0, 0) ;

d2f =0 . dY =2
dxdy ' dy2

Therefore the two roots of the quadratic equation defining -^ are

both equal to zero. So far, this case is exactly like the last one, but

here no part of the curve lies to the left of the axis y. On the right

side, the curve is symmetric with regard to the x-axis. As x increases,

y increases ; there are no maxima nor minima, and no inflexions

(Fig. 54). .

p]x. 3. f(x, y) - x4 - 2 ax'2y - axy2
-f ahf- = 0.

The point (0, 0) is a singular point, and the roots of the quadratic

defining -j- are both equal to zero, hence the origin is a cusp, and the

cuspidal tangent is the a;-axis.

To show the form of the curve near the cusp, solve the equation

for ?/. Then ._

a — x\ y a I

First suppose that a is positive.

When x is negative, y is imaginary ; when x = 0, y = ; when x is

positive, but less than a, y has two positive values, therefore two

branches are above the a>axis. When x = a, one branch becomes in-

finite, having the asymptote x = a ; the other branch has the ordinate

\ a. The origin is therefore a cusp of the second kind (Fig. 55).

Next suppose that a is negative. When x is positive, y is imagi-

rary; when x is negative, y is real. The same reasoning as before
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shows that there is a cusp of the second kind in the second quarter,

with the #-axis as a cuspidal tangent.

Examine the transition case in which a = 0.

Fig. 54 Fig. 55

105. Conjugate points. Lastly, let H be negative. In this

case there are no real tangents ; hence no points in the im-

mediate vicinity of the given point satisfy the equation of the

curve.

Such an isolated point is called a conjugate point.

Ex. 1. /(*, y) = ay2 - x* + bx2 = 0.

Here (0, 0) is a singular point of the

locus, and at this point we find

dy =
dx

both roots being imaginary if a and b

have the same sign.

To show the form of the curve, solve

the given equation for y.

Then y=±x\x — b
Fig. 5G

and hence, if a and b are positive, there are no real points on the

curve between x = and x - b. Thus O is an isolated point (Fig. 56).

Examine the cases in which a or b is negative.
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These are the only singular ities that algebraic curves can

have, although complicated combinations of them may appear.

In each of the foregoing examples, the singular point was

(0, 0) : but for any other point, the same reasoning will apply.

Ex. 2. f(x, y) = x2 + 3 y* - 13 y
2 - 4 x + 17 y - 3 = 0,

3£=2.r-4, 3/"= 9 y
2 - 26 y + 17.

dx dy

At the point (2, 1), /(2, 1) = 0, &=0, ^=0; hence (2, 1) is

,
.

4.
dx dy

a singular point.

Also^ = 2; JE£-=0; |2f= 18y - 26, = - 8 at (2, 1).
dx2 da; cty d//

2

Hence — = ± -
; and thus the equations of the two tangents at the

dx 2

node (2, 1) are y - 1 = \(x - 2), y - 1 = -
| (a: - 2).

When JT is negative, the singular point is necessarily a con-

jugate point, but the converse is not always true. A singular

point may be a conjugate point when H = 0. [Compare

Ex. 4 below.]

EXERCISES ON CHAPTER XIII

Examine each of the following curves for multiple points and find

the equations of the tangents at each such point ; also find the

asymptotes and sketch the curve :

1. a2x2 = b 2
y
2 + *V-

2 a — x

3. x3 + y\ = «f
; or, in rational form, (x2+y2— a 2

)
3+ 27 a 2x2

y
2 = 0.

4. y
2(x2 - a 2

) = x4
.

5. y— a+ x + bx2 + cx% ; or, in rational form,

(y- a-x- bx2
)
2 - c2s« = ( )

.



SINGULAR POINTS 199

When a curve has two parallel asymptotes it is said to have a node

at infinity in the direction of the parallel asymptotes. Apply to

Ex. 6.

6. (x*-y*y—4y* + y = 0.

7. x*-2 ay* - 3 a 2
y
2 - 2 d2x2 + a 4 = 0.

J. y
2 _ x (x + a)2. a > o . a < o.

9. xs — 3 axy + y
z = 0. Find the asymptote and sketch the curve.

10. y'2 = x* + x5.

11. Show that the curve y = x log a: has a terminating point at the

origin. Find the minimum value of y and sketch the curve.

12. y — x2 log x.



CHAPTER XIV

ENVELOPES

106. Family of curves. The equation of a curve,

/(»,y) = o,

usually involves, besides the variables x and ?/, certain coeffi-

cients that serve to fix the size, shape, and position of the

curve. The coefficients are called constants with reference

to the variables x and y, but it has been seen in previous

chapters that they may take different values in different

problems, while the form of the equation is preserved. Let

a be one of these "constants." Then if a is given a series

of numerical values, and if the locus of the equation, corre-

sponding to each special value of a is traced, a series of curves

is obtained, all having the same general character, but differ-

ing somewhat from each other in size, shape, or position. A
system of curves so obtained is called a family of curves.

For example, if h, k are fixed, and }> is arbitrary, the equa-

tion (y—k) 2 = 2p(x — h) represents a family of parabolas,

each curve of which has the same vertex (h, k), and the same

axis y = k, but a different latus rectum. Again, if k is the

arbitrary constant, this equation represents a family of parab-

olas having parallel axes, the same latus rectum, and having

their vertices on the same line x = h.

The presence of an arbitrary constant a in the equation of

a curve is indicated in functional notation by writing the

200
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equation in the form ,/(#, y, a)= 0. The quantity a, which

is constant for the same curve but different for different

curves, is called the parameter of the family. The equations

of two neighboring curves are then written

f(x, y, a) = 0, />, y, a + h) = 0,

in which h is a small increment of a. These curves can be

brought as near to coincidence as desired by diminishing h.

107. Envelope of a family of curves. A point of intersection

of two neighboring curves of the family tends toward a limit-

ing position as the curves approach coincidence. The locus of

such limiting points of intersection is called the envelope of

the family.

Let f(x, y, a)= 0, f(x, y, a + h) = (1)

be two curves of the family. By the theorem of mean value

'(Art. 39)

f(x, y, a + h) = f(x, y, a) + h
d
/- (as, y, a + 6k), (2)
da

which, on account of equation (1), reduces to

d£{x,y,« + 6h)=().

Hence, it follows that in the limit, when h = 0,

J-(x, y, «)=0
da

is the equation of a curve passing through the limiting points

of intersection of the curve /(a?, y }
a) = with its consecutive

curve. This determines for any assigned value of a definite

limiting points of intersection on the corresponding member of
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the family. The locus of all such points is then to be obtained

by eliminating the parameter a from the equations

f(x, y, a) = 0, -f (x, y, a) = 0.
da

The resulting equation in x and y represents the fixed enve-

lope of the family.

108. The envelope touches every curve of the family.

I. Geometrical proof. Let A, B, C (Fig. 57) be three consec-

utive curves of the family ; let A, B intersect in P, and B, C inter-

sect in Q. When P, Q approach coincidence, PQ will be the

direction of the tangent to the envelope at P; but since P, Q

are two points on B that approach coincidence, hence PQ is

also the direction of the tangent to B at P, and accordingly B
and the envelope have a common tangent at P. Similarly for

every curve of the family.

II. More rigorous analytical proof. Let — f(x, ?/, a) =
da

be solved for a, in the form a = <£(#, y). Then the equation

of the envelope is

f(x, y, <f>(x, y)) = 0.

Equating the total avderivative to zero, we obtain

dx dy dx d<f>\dx By dxj
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but -J- = -J- = 0, hence the slope of the tangent to the enve-
d<f> da

lope at the point (x, y) is given by

df+ dfdy =
dx dy dx

But this equation defines the direction of the tangent to the

curve /(a?, y, a) — at the same point, and therefore a limit-

ing point of intersection on any member of the family is a

point of contact of this curve with the envelope.

Ex. Find the envelope of the family of lines

Differentiate (1) as to m,

y = mx+£-, (1)
•

m
obtained by varying m.

=*-£. (2)

To eliminate m multiply (2) by m and square ; square (1) and sub-

tract the first from the second. The envelope is found to be the

parabola « Ar
y
2= Ipx.

Draw the lines (1) corresponding to

m = 1, 2, 3, 4, oo ; m - - 1, - 2, - 3, - 4.

109. Envelope of normals of a given curve. The evolute

(Art. 99) was defined as the locus of the centers of curvature.

The center of curvature was shown to be the point of intersec-

tion of consecutive normals (Art. 92), whence by Art. 107 the

envelope of the normals is the evolute.

Ex. Find the envelope of the normals to the parabola y
2 = ±px.

The equation of the normal at (xv y\) is
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or, eliminating x\ by means of the equation yf = ipxv we obtain

J Ul 8^ 2p
K }

The envelope of this line, when y x
takes all values, is required.

Differentiate as to ?/,, n „

_ i - ^JL\ _ JL
8p* 2p'

On substituting this value for y l
in (1), the result,

27 pif = 4(> - 2 jo) 3
,

is the equation of the required evolute. Show that this semi-cubical

parabola has a cusp at (2p, 0). Trace the curve.

110. Two parameters, one equation of condition. In many

cases a family of curves may have two parameters which are

connected by an equation. For instance, the equation of the

normal to a given curve contains two parameters xYi yx
which

are connected by the equation of the curve. In such cases

one parameter may be eliminated by means of the given rela-

tion, and the other treated as before.

When the elimination is difficult to perform, both equations

may be differentiated as to' one of the parameters, a, regard-

ing the other parameter /? as a function of a. This gives four

equations from which a, 8, and — may be eliminated, the
da

resulting equation being that of the desired envelope.

Ex. 1. Find the envelope of the line

a b

the sum of its intercepts remaining constant.
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The two equations are - -\- -J- — 1,
a b

a + b = c.

Differentiate both equations as to a
;

— x _y_db _ „

• a 2 H2 da~ '

1+*
da

Eliminate

Then — = *-. which reduces to
a2 b2

db
i

da

x y x
+ y

a b a h
- — -

; whence a = Vex, b = Vey.
a b a + b c

Therefore Vx + Vy = Vc

is the equation of the desired envelope. [Compare Ex. p. 87.]

This equation when rationalized is

(x- yy-2c(x + y) + c 2 = 0.

By turning the coordinate axes through 45°, show that this repre-

sents a parabola whose axis bisects the angle between the original

axes. Show that the curve touches both these axes. Draw different

lines of the family, corresponding to a = 4, b = 4 ; a = 5, b = 3 ; a = 6,

Z> = 2 ; a - 7, b = 1 ; a = 8, 6 = 0; etc.

Ex. 2. Find the envelope of the family of coaxial ellipses having

a constant area.

Here x- + f- = \-
a*l b2

a& = £2.

For symmetry, regard a and 6 as functions of a single parameter /.
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Then by differentiation as to t,

&<]±j
r
t_db _

as dt b* dt.~
'

hence

-.da . db Ab h a— =
dt dt

& = T
i
2 62 2

a = ±xV'2, b =±yV2,

and the envelope is the pair of rectangular hyperbolas xy = ± \ k'2.

Y

Fig. 58

Note. A family of curves may have no envelope; i.e., consecutive

curves may not intersect; e.g., the family of concentric circles x2 +y2

= r2, obtained by giving r all possible values.
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If every curve of a family has a node, and the node has

different positions for different curves of the family, the enve-

lope will be composed of two (or more) curves, one of which

is the locus of the node.

Ex. Find the envelope of the system

in which X is a varying parameter.

Here 3L = — 2(y — A.) = 0; by combining with /= to eliminate
dX

X, we obtain x2 = 0, x — 1 = 0, x + 1 = 0.

From Art. 103 it is seen that the point

x = 0, y = X

is a node on /; moreover, the various curves of the family are ob-

tained by moving any one of them parallel to the y-axis. The lines

x — 1=0, £ + 1 = form the proper envelope, and x = is the locus

of the node.

EXERCISES ON CHAPTER XIV

Find the envelope of each of the following families of curves

;

draw to scale various members of the family, and verify that the en-

velope has been correctly found.

1. The family of straight lines x cos a + y sin a = p, when « is a

parameter.

2. A straight line of fixed length a moving with its extremities

in two rectangular axes.

3. Ellipses described with common centers and axes, and having

the sum of the semi-axes equal to c.

4. The straight lines having the product of their intercepts on

the coordinate axes equal to k2
.

5. The lines y - ft
= m (x -«)+ rvT+m*, m being a variable

parameter.
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6. A circle moving with its center on a parabola whose equation

is y
2 = 4 ax, and passing through the vertex of the parabola.

7. A perpendicular to any normal to the parabola y
2 = 4 ax,

drawn through the intersection of the normal with the x-axis.

8. The family of circles whose diameters are double ordinates of

the ellipse b2x'2 + a2
y
2 = a 2//2 .

9. The circles which pass through the origin and have their

centers on the hyperbola x2 — y
2 = c2 .

10. The family of straight lines y = 2 mx + m A
, m being the vari-

able parameter.

11. The ellipses whose axes coincide, and such that the distance

between the extremities of the major and minor axes is constant and

equal to k.

12. From a fixed point on the circumference of a circle chords are

drawn, and on these as diameters circles are described.

13. With the point (xi, //i) on a given ellipse as center, an ellipse

is described having its axes equal and parallel to those of the given

ellipse. Let (xi, y{) describe the given ellipse.

14. Show that if the corner of a rectangular piece of paper is

folded down so that the sum of the edges left unfolded is constant,

the crease will envelop a parabola.

15. In the " nodal family " (y - 2 a) 2 =(x - «) 2+ 8 xs - y
3

, show

that the usual process gives for envelope a composite locus, made up

of the "node-locus" (a line) and the envelope proper (an ellipse).

16. The family of curves (y — x 2
) + a (x — y

2
) = 0.
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:>>*<

CHAPTER I

GENERAL PRINCIPLES OF INTEGRATION

111. The fundamental problem. The fundamental problem

of the Differential Calculus, as explained in the preceding

pages, is this

:

Given a function f(x) of an independent variable x, to deter-

mine its derivative f'(x).

It is now proposed to consider the inverse problem, viz.

:

Given any function f'(x), to determine the function f(x) hav-

ing f'(x) for its derivative.

The solution of this inverse problem is one of the objects

of the Integral Calculus.

The given function f(x) is called the integrand, the func-

tion f(x) which is to be found is called the integral, and the

process gone through in order to obtain the unknown function

f{x) is called integration.

The operation and result of differentiation are symbolized

by the formula cj

Tx
f{x) =m ' (1)

or, written in the notation of differentials,

df(x)=f\x)dx. (2)

el. c/xc. — 14 209
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The operation of integration is indicated by prefixing the

symbol j to the function, or differential, whose integral it is

required to find. It is called the integral sign, or the sign of

integration. Accordingly, the formula of integration is written

thus

:

/(*)=//'(*) dx.

Following long established usage, the differential, rather

than the derivative, of the unknown function /(a?) is written

under the sign of integration. One of the advantages of so

doing is that the variable, with respect to which the integration

is performed, is explicitly mentioned. This is, of course, not

necessary when only one variable is involved, but it is essential

when several variables enter into the integrand, or when a

change of variable is made during the process of integration.

112. Integration by inspection. The most obvious aid to

integration is a knowledge of the rules and results of differen-

tiation. It frequently happens that the required function /(a?)

can be determined at once by recollecting the result of some

previous differentiation.

For example, suppose it is required to find

/ cos x dx.

It will be recalled that cos x dx is the differential of sin x, and

thus the proposed integration is immediately effected ; that is,

/ cos xdx = sin x.

Again, suppose it is required to integrate

xn dx,/•



GENERAL PRINCIPLES OF INTEGRATION 211

in which n is any constant (except — 1). This problem sug-

gests the formula for differentiating a variable affected by a

constant exponent [(6), p. 44]. The formula referred to may

be written . n+1

d(- )= xn dx,
\n + y

/» zy.n+ 1

and hence we conclude,s,
f
xn dx

?i + l

An exception to this result occurs when n has the value — 1.

For in that case we deduce from (8), p. 44, the formula of

integration

I x L dx = I — = log x.

The method used in the above illustrations may be designated

as integration by inspection. This is, in fact, the only practical

method available. The object of the various devices suggested

in the subsequent pages is to transform the given integrand

or to separate it into simpler elements in such a way that the

method of inspection can Ipe applied.

113. The fundamental formulas of integration. When the

formulas of differentiation, pp. 44-45, are borne in mind, the

method of inspection referred to in the preceding article leads

at once to the following fundamental integrals. Upon these,

sooner or later, every integration must be made to depend.

clu =
n+ l

n+ 1
I. f u tl

n.Jf = ,.g „.

III. Ca^du=~lU-
J log a
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IV. Ceu du = eu .

V. I cos u du = sin u,

VI. I sin u du = — cos u.

VII. I sec2 udu = tan w.

VIII. I esc2 «* rfi* = — cot u,

IX.
J

sec u tan ^ d«* = sec u.

X. I esc u cot ?^ f/«j = — esc u.

XI. f
rfM =sin-iM. or-cos-t^.

XII. f
^M

, = tan-i w, or - cot-i t*.

J 1 + w2

114. Certain general principles. In applying the above for-

mulas of integration certain principles which follow from the

rules of differentiation should be made use of.

(a) Tlie integral of the sum of a finite number of functions is

equal to the sum of the integrals of the functions taken separately.

This follows from Art. 10.

For example,

I dx = I x dx— I — = -— lo
J x *s J x "J

sx.
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(b) A constant factor may be removed from one side of the

sign of integration to the other.

For, since d(cu) = cdu,

it follows that I cdu—cu-c I du.

To illustrate, let it be required to integrate

x2 dx./<

The numerical factor 5 is first placed outside the sign of

integration, after which formula I is applied. Accordingly,

n ^3
I 5 x2 dx = 5 I x2 dx = -—.

Again, suppose the integral

/,
x dx

is to be found. We notice that if the numerator had an addi-

tional factor 2, it would be the exact differential of the

denominator, and formula II would be applicable. All that is

required, then, in order to reduce the given integral to a known

form, is to multiply inside the sign of integration by 2 and

outside by \. This gives

Cxdx 1 C2xdx lAI(x2 + l) li /o liN

In this connection it must not be forgotten that:

An expression containing the variable of integration cannot be

moved from one side of the sign of integration to the other.

(c) An arbitrary constant may be added to the result of

integration.
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For, the derivative of a constant is zero and hence

du = d(u + c),

from which follows

d(u + c) = u + c.fau
=f'

This constant is called the constant of integration.

From the preceding remark it follows that the result of

integration is not unique, but that any number of functions

(differing from each other, however, only by an additive con-

stant) can be found, each of which has the same given expres-

sion as its derivative. [Compare Art. 10, Cor.]

Thus, any one of the functions x2 — l, x* + l, tf + a2
,

(x—a)(x-\-a) may serve as a solution of the problem of inte-

grating
f
2 x dx.

It often happens that different methods of integration lead

to different results. All such differences, however, can occur

only in the constant terms.

For example,

f3 (x + 1)
2 dx = 3|f(aj + l) 2 d{x + 1) = (x + l)3

= aj
8 + 3a2 -f3a;+l.

Integration of the terms separately gives

Csx2 dx-\- C$xdx+ ^3^ = ^ + 3^4-3^,

a result that agrees with the preceding except in the constant

term.

Again, from formula XII,

dx

s tan-1 x, or — cot
-1

x.

ar' + l
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It does not follow from this that tan_1 & is equal to — cot
-1

#.

But they can differ at most by an additive constant. In fact,

it is known from trigonometry that

— cot
-1 x = tan-1 x -f for + j

,

_

in which k is any integer.

In a similar manner the different results in formula XI can

be explained.

EXERCISES

Integrate the following :

1. (Vxdx. 11. f
CSc2j: ^.

J J cot X

[Hint. For the purpose of in-

tegration this may be written 12. f -sin

(x% dx.~]
J ~ dx

fw*. 13. f * L/ *
J J x log x\_ t/ log x

+ cos a;

r
2. \ xa dx.

3

log x L «' log a:

f ,/.* 14 C5x2 dx
' J

3-' '

J X* + l '

V x

4 Cmt*JJz
m

15. Jtana:^[ = -| -
ŝ^].

5. jV -**)•**.
16 ^otxdx.

6
C5x*-^x + l

dx 17 Ceaxdx ,

7. (x(x2 + a 2)'2 dx. H8. (e**xdx.

8. J(aar+6)»rfar. * 19. f («-!-&) »»+n*a*a:.

20. I cos 2 xdx.9
' J^i- 20-

J'

, n C(n -x)dx r
.u "

J Ti 7 * 21. i sin nz rt.r.
^ 2 ax - x1

J
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, 22. fco**xdx[=P+
c™ 2x

dx~].

23- \sln2 xdx. i24. i sin(m -f n)x dx. 25. Kxsmx^dx.

26. ( co$?xdx\ = i (1 — sin2 a:)cos xdx . 27. ( sin3 a;G?a;.

28. rtan2xr/xT= f(sec2
a; - l)r/af|. 29. f tan 2 x sec2 ztf*

30. \ esc2 (ax -\- b)dx. 31. ( Vcot a: • esc2 x dx.

32 f
^ r f — r sec2 .rr/.r~j

•/ sin x cos a; L J tan a: J

33. \ sec3 a: tan a; dx.

34. r
tnTirr/r

. 35. r
J sec a- ./

r/s

Va 2 - x2

[Hint. Divide numerator and denominator by a and then write

in the form

J ^w
36. J

dx

Vl - 4 x2

37.
J a 2 + m5

38. f-^-
J a2

a-
2 + fta

39. f
** r = f ^- 2

> i.
J x-2 _ 4 3 + 5 L J (a: - 2)

2 + 1

J

115. Integration by parts. If u and v are functions of x, the

rule for differentiating a product gives

d(uv) = v du -J- u dv,

whence, by integrating and transposing terms, we have

I u dv — uv —
|
v du.
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This formula affords a most valuable method of integration,

known as integration by parts. By its use a given integral is

made to depend on another integral, which in many cases is

of a simpler form and more readily integrable than the

original one.

Ex. 1.
J
\ogxdx.

Assume u = log x, dv = dx.

Then du = — , v = x.
x

By substituting in the formula for integration by parts, we obtain,

i log xdx — x log x — \ dx

= x log x — x = xQog x — 1

)

= x(\og x — log e) = x log -

.

e

Ex. 2. (xex dx.

Assume u = x, dv = e* dx.

Then du = dx, v = e
x

,

and ( xex dx = xex — ( e
x dx = e?(x — 1).

Suppose that a different choice had been made for u and dv in the

present problem, say
u = ^ rfy =^

From this would follow

r2

du — e
x dx. v = —

,

2

and j xex dx = | x2e
x — I —ex dx.

C

x

2

It will be observed that the new integral j —e*dx is less simple in

form than the original one ; hence the present choice of u and dv

is not a fortunate one.

No general rule can be laid down for the selection of u and dv.

Several trials may be necessary before a suitable one can be found.
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It is to be remarked, however, that dv should be so chosen that its

integral may be as simple as possible, while u should be so chosen

that in differentiating it a material simplification is brought about.

Thus in Ex. 1, by taking u — log x, the transcendental function is

made to disappear by differentiation. In Ex. 2, the presence of either

x or e
x prevents direct integration. The first factor x can be removed

by differentiation, and thus the choice u = x is naturally suggested.

Ex. 3. ( x2ax dx.

From the preceding remark it is evident that the only choice which

will simplify the integral is

u = x2
, dv = ax dx.

a
Hence du = 2 xdx, v = -

,

log: a

and (x2a*dx = -^- — (xax dx.
J lotr a log: a J

Apply the same method to the new integral, assuming

u = x, di' = ax dx,

whence du = dx, v —
,

log a

and fxax dx = ^- - —!— f ax dx
J log a log a J

x(t ar

log a (log a)'2

By substituting in the preceding formula, we have

J log a L log a (logo) 2J
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EXERCISES

1. i sin~ i xdx. 7. i x cot-1 x dx.

2. f «* tan" 1 (€*)</*. 8. \ x sin 3 x dx.

3. 1 a:
2 cos xdx. 9. \ e* cos x dx.

4. \xn \ogxdx. 10. \ e
x sin xdx.

5. 1 a*2 tan -1 xdx. 11. \ cos a: cos 2 a: /7a*.

6. f sec a: tan x log cos a: dx. 12. I x sec2
a- </a\

116. Integration by substitution. It is often necessary to

simplify a given differential f'(x)clx by the introduction of a

new variable before integration can be effected. Except for

certain special classes of differentials (see, for example, Arts.

127-129) no general rule can be laid down for the guidance of

the student in the use of this method, but some aid may be

derived from the hints contained in the problems which follow.

Ex. 1. | xdx
.

Va2 - x2

Introduce a new variable z by means of the substitution a-— x2= z.

Differentiate and divide by - 2, whence xdx— — — . Accordingly,

The details required in carrying out this substitution are so simple

that they can be omitted and the solution of the problem will then

take the following form :

f
XdX = (V - **)"* xdx = -

I ( («
2 - x*y*( - 2 xdx)J

Vf/ 2 - a-
2 J • - J
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In this series of steps the last integral is obtained by multiplying

inside the sign of integration by — 2 and outside by —
I, the object

being to make the second factor the differential of a 2 — x2
. Think-

ing of the latter as a new variable, the integrand contains this

variable affected by an exponent (- i) and multiplied by the differ-

ential of the variable, in which case formula I can be applied.

Ex. 2. r!°£* dx .

J x

Assume log x = z..

Then -- = dz,
x

and fl^?^ = f^ = l
2

= -Q^.
J x J 2 2

Here again it is not necessary to write out the details of the sub-

stitution, as it is easy to think of log a; as a new independent variable

and to perform the integration with respect to it. It is then readily

seen that the expression to be integrated consists of the variable

dx
log # multiplied by its differential —:

, and that the integration is

x
accordingly reduced to an immediate application of the first formula

of integration. Thus

k2

ij\ogx.d(\ogx) = Off*)'

Ex. 3. jEx. 3. \ eian *
dx

gives

1 + x2

Think of tan-1 x as a new variable and apply formula IV. This

r etan-'*_^ _ fgtan-'x,/(tan-la-) = ^tan^x.
J 1 + x2 J

Ex. 4. C*™- 1 ***.

dx

j-

Ilegard sin
-1

a: as a new variable and - as the differential

Vl — x2

of that variable. Apply formula I.
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Ex. 5. j*02 + 2 x + 3)0 + l)dx.

Multiply and divide by 2. The integral then takes the form

If (a? + 2 x + 3) • (2 x + 2)rfar.

Observing that (2 x -\- 2)dx is the differential of x2 + 2 x + 3, and

using the latter expression as a new variable, we see that formula

I is directly applicable, leading to the result

Ex. 6. flog cos (x2 + 1) sin (a;2 + 1) • xdx.

Make the substitution x"2 + 1 = z.

The given integral takes the form

- I log cos z sin z dz.

Make a second change of variable,

cos z — y.

Then sin zdz = — dy.

The transformed integral is

-lijlogydy,

to which the result of Ex. 1, p. 217, can be at once applied.

It will be observed that two substitutions which naturally suggest

themselves from the form of the integrand are made in succession.

The two together are obviously equivalent to the one transformation,

cos(x2 + 1) = y.

Ex.7, f du Ex.8, f
du

.

J
y/cfi _ u* J u- + a 2

-[Hint. Substitute u = as.]
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Ex. 9. f dx

/„.9

— • Ex. 10. ^ dx

V2 ax — x*

Hint. Substitute x = - • [Hint. Substitute x = z + a.]

Ex. 11. | esc m du.

Multiply and divide the integrand by esc u — cot u. It will then

be seen that the integral has the form i —
J z

Another method would be to use the trigonometric formula

n • u u
sin u = 2 sin -cos -,

2 2 \

2 V2/ Cdt=1—1
tan^

J l

2

Ex. 12. \ sec u du.

Put u = z and use Ex. 11.
2

Solve the problem also by means of substitutions similar to those

used in the preceding example.

sin 3 x
Ex.13. (x*y/a*-x*dx. Ex.15. f£°l£

J J sin-

Ex.14, f
*a

'7ar
•

Ex.16, f
J(a;-1) 3 J

dx

cos 2
a; -f 2 sin2 x

Put tan x — z.

Ex. 17. Prove that I —— can be integrated by a substitution,
J (a + bx)n

when m is a positive integer.

117. Additional standard forms. The integrals in Exs. 7, 8,

11, 12 of the preceding article, and in Exs. 15, 16 of Art. 114,

are of such frequent occurrence that it is desirable to collect
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the results of integration into an additional list of standard

forms. Two other very useful formulas are also included, the

derivation of which we now give.

du
Integration of f

du

Make the substitution

u +Vw2 4- « = z.

From this equation, we obtain, by differentiation,

(l + U
} du = dz

;

\ Vw2 + aJ

du
that is, (VV + a+ u) ——= = dz,

Vw* + a

whence,
du dz dz

Vm2 + a Vw2 + a-\-u z

This gives, on integrating,

>_* ,r*_ log ,
J Vm2+« ^ z

= \og(u -f Vw2 + a).

Integration of f fu o
•

J w2 — a2

The fraction — may be written as the sum of two
u2 — a"

simpler fractions,

_l_ = j_[^ l_i
u- — a2 2a\_u —a u + aJ
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whose denominators are the factors of u2 — a2
. Hence,

r du _ 1 rr_du_ du 1

J u2 — a2 2 aJ [_u — a u -f aJ

li / x .1 1 , u— a

J a it 4- ct

= 2^ log (w - a)- log (w 4- a)

XIII.
du =Sin-^

Va2/;

XIV. f
**" - log (u 4 VttHo).

a

u — a
u + a

XVII. I tan udu = - log cos u - log sec u.

XVIII.
J
cot udu = log sin u.

XIX.
J
sec w du = log (sec ™ + tan u) = log tan (tt + jY

XX.
J
esc m rJw = log(esc u — cot w) = log tan „ •

118. Integrals of the forms

/ •(Ax + B)dx and
/» (^g; + B)dx

ax2 + bx + c J y/ax*+ bx + c

Such integrals occur so frequently that they deserve special

mention. The integration is facilitated by the substitution

of a new variable t which reduces the affected quadratic

ax2 4- bx 4- c to a pure quadratic of the form mt2 + n. The

mode of procedure will be readily understood from the follow-

ing illustrative problems.
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x , , C xdx
I,x. 1. \

— -.

J 2 x 2 + 2 x + 3

The first step is to complete the square of the x terms in the

denominator. After the factor 2 has been placed outside the integral

sign, the quadratic expression may be written

(x* + x + 1) + a - \) = (x + \y + 1

.

Now substitute a new variable t in place of x+\. Since x = t — \ and

dx = dt, we obtain for the new form of the given integral

1 r(t-\)dt = \ r'ltdt If dt

**+*

1L= ilog(*2 +-^ — tan

2V5 V5

Ex.2, f (2^-1)^
J VI +2^-3^'

Divide out V3 from the denominator; since the coefficient of x2 is

negative, put the x terms in parentheses preceded by the negative sign

and complete the square. The integral then becomes

\)dx.

V'SJ v'| - (x - i)*

Now make the substitution x — \= t. Since dx = <//, the integral

reduces to

V (-^=-^(M4(-- -^-
V.jJ V| - ** ViiJ \9 / 3V3J V-f - t'

2

2

'3A9 ; 3V3 V 2 /

2 /r~2 I 1 • J3x-1\
-v/- -f - :r — a;

2 sin-1 -
Vo

-^ 3 3 V3 V 2 ;

- -a/1 + 2 a: - 3 x2 -— siu-*f
3 * ~ * V

3^ 3V3 V 2 J

EL. CALC— 15
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It is seen from the two preceding examples that the met)

here used contains two essential steps

:

(1) Completing the square of the x terms in ax2
-\- bx + c ;

(2) Substituting a new variable for the part in parentheses.

If the numerator of the new integral contains two terms,

separate into two integrals and integrate each one separately.

EXERCISES

1 C dx
8 C

('2x ~ 3) rix

J3x2 -2x + 5'
9. )\}~ X

dx.

dx

J 8 + 4 x - 4 x2

4
r dx

^ V30 x - 9 xi - 24

5.
C x dx
* Vx* + 2 x + 2

6.
J VI + 2 x - x2

7
C (4x + 5)dx
* V8 - 4 x - 4 x2

119. Integrals of the forms

+

[Rationalize the numerator.]

1Q r (3x + 2)rfz
,

11. ]•#

12
f (2 x_+_l),/a .

J V-2^- 3z- 1

13
r (x-Z)dx

' J V-3s2 -2a; + l

f-
** and f

dx
(Ax + ByWax* + bx + c

Integrals of these types can be reduced to forms given in

the preceding article by means of the reciprocal substitution
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I x EXERCISES

C dx
7

f_. dx
* xVx* + a2 ^ (x + 2) V- a:

2 - 10x-7

8. f dx
.

J
ar
2Va2 — x2

^

6

xVx2 + a2

rfx

xVa2 — x2

dx

xVo x- — 4 x + 1

rte

(x + l)Vx2 + 2 X + 3

tfs

(x + l)Vx2 + x + 1

tfx

^ x2v x2 - a2

10. f_
rfj;

5. f- dx ' JxWx* + a*

r ^/x ii r - fix

*
(\ - x^ \f'2 x2 - 4 r. + 1 ^ f2 x -(1 - x) v/2 x1 - 4 x + 1

J
(2 x- - 1) V4 x'

2 - 3

EXERCISES ON CHAPTER I

1. ( e** ex dx. 7. \x(a'2 - x2)* dx.

8. f
*•«

9. f
•"

J
y/X + 1 + Vx - 1

10. i cos 8 x dx.

11. ( sec 3 x dx.

12- 1 f
r sin e* rfx.

2.
f 5 xz dx

J 4 + x8

3
f (2 + 3x2

) f/x

J 6 x3 + 12 x + 5

4. f
1 +

*rf*.
J Vx

5. f * .

J ^8 - 2 «

6
r //x
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dx
13

C sin x dx 23 f_
J a cos x + b * 6xVl - log a;

C dx
'

1 , «/. C ex dxJ Vl - e2* 24. \ -•
14

.
[Put e— = «.]

15 r s<fo
.

25. j*

ex + e-

cos dO

y/l _ ^4 vl + cos'2 - sin ^

16. S ,

dX
26. f- dx

V'4 a:
4 + 8 a;

2 J a: (log a:)
2 + x

17 leT^- 27. f(
seC * Vd,.e e J \a - b tan x/

18. \%4 tan-1 a; da;.

28.
J.

(a: — a) dx

Cx~ dx J Va*-a2(x — a) 2 —(x-a) 4

J ax

2,j_™ f ^0 r fl-sin^./n
20

- )m^L =3^s^ rfe
]- "«-v8^ +2 «+i

._ f tan (9^ r
Ja + fttan'0" 31.

J
sin a: log tan x dx.

32 r ^ r— f
s* n x ^x

J 1 + cot a: L J sin a: 4- cos x

— 1 f (sm x + cos x) — (cos x — sin a:) ,

2 J sin a; + cos x

= 1 rA.cosar-sinarX^l
2 J V sin a; -f cos a;/ J

[Another method would be to multiply numerator and denominator

by sin a:(cos x — sin x) and express in terms of the double angle.]



CHAPTER II

REDUCTION FORMULAS

120. In Arts. 118, 119 the integration of certain simple ex-

pressions containing an irrationality of the form ^/atf+bx+c

was explained. As was shown in Art. 118, the radical can

be reduced to the form V ± x2 ± a? by a change of variable.

It remains to show how the integration can be performed in

in such cases as, for example,

xndx
j zwV ± x2 ± a2dx, J

-

V ± a? ± ci-

ri being any integer.

For this purpose it is convenient to consider a more general

type of integral of which the preceding are special cases, viz.,

Car(a + bxn
)
pdx, (1)

in which m, n, p are any numbers whatever, integral or frac-

tional, positive or-negative.

It is t$> be remarked in the first place that n can, without

loss of generality, be regarded as positive. For, if n were

negative, say n = — n', the integrand could be written

xmfa +IV = xmf
axn'j' 5V = xm-*n'(b + ax*'y

This expression, which is of the same type as xm(a + bxn
)
p

, is

such that the exponent of x inside the parentheses is positive.

229
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It will now be proved that an integral of the type (1) can in

general be reduced to one of the four integrals

(a) A
j
xm

~n(a + bxn
)
pdx, (b Ai xm+n(a + bxn

)
pdx,

(c) A I xm(a + bxn
)
p-*dx, (d) A ( xm(a + bxn]*+ ldx

f

plus an algebraic term of the form

BxK(a + bxny.

Here A, B, \, fx are certain constants which will be deter-

mined presently.

Observe that in each of the four cases the integral to which

(1) is reduced is of the same type as (1), but that certain

changes have taken place in the exponents, viz.,

the exponent m of the monomial factor is increased or dimin-

ished by n,

or, the exponent p of the binomial is increased or dimin-

ished by unity.

The values of A. and fi are determined by the following rule :

Compare the exponents of the monomial factors in the given

integral and in the integral to which it is to be reduced. Select

the less of the two members and increase it by unity. The result

is the value of\. In like manner, compare the exponents of the
*

binomial factors in the two integrals, select the less, and increase

it by unity. This gives /x.

Thus, if it is desired to reduce the given integral to

A j xm
~n(a 4- bxn

)
pdx,

first write down the formula

j
xm(a + bxn

)
pdx — A \ xm

~n(a 4- bxn)
pdx + Bxx(a 4- &»)*.



REDUCTION FORMULAS 231

The exponents of the monomial factors in the two integrals

are m and m — n respectively, of which m — n is the less.

This, increased by unity, gives the value of X; that is,

X = m — n + 1.

Again, the exponent of the binomial factor in each integral

is the same, namely p, so that there is no choice as to which of

the two is the less. Increase this number p by unity to obtain

the value of /x. Hence /x = p -f 1.

The above formula may now be written

J
xm(a -(- bxn

)
pdx

= A Cxm-'l(a + bxn
)
pdx + Bxm-n+1(a + bxn

)
p+\ (2)

In order to determine the values of the unknown constants

A and B, simplify the equation by differentiating both mem-

bers. After being divided by xm
~n(a + bxn

)
p the resulting

equation is reduced to

xn = A + Ba(m — n + 1) + Bb(m + np + l)a,-
n

.

By equating coefficients of like powers of x in both members,

we find the values of A and B to be

A _ a(m - m + 1) B= 1

b(m + np -h 1)

'

b(m + np + l)'

When these values are substituted in formula (2), it becomes

J

xm(a +bxn
)
pdx

ci{m — n + 1)

+ np+l)J v 7 6(m+np + l)
LJ

Notice that the existence of formula (2) has been proved

by showing that values can be found for A and B which make

the two members of this equation identical.
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There is one case, however, in which this reduction is

impossible, viz., when
m + np + 1 = 0,

for in that case A and B become infinite. [See Ex. 4, p. 235.]

In a similar manner the three following formulas may be

derived

:

J
xm(a+ bxn

)
p dx

a(m + l) J k -r j
a (m + l)

I £m(a + bxn
)
p dx

: l
I xm(a + bxn) p

xdx H *—-*-
f-

• TC]
m + np + 1 •/ m + ?ip + 1

I xm(a-\-bxn
)
p dx

:—! —i—— I xm(a + bxn
)
p +hlx i

—

- TDl
an(j> + l) J awQj + 1)

The cases in which the above reductions are impossible are,

For formulas [A] and [C], when m + np + 1 = 0;

for formula [B] , when m + 1 = ;

for formula [D] , when _p + 1 = 0.

.. (xsVaEx.1. \ x8Va* - x* <lx.

If the monomial factor were x instead of x3
, the integration could

easily be effected by using formula I. Since in the present case

m — 3, n = 2, formula [A], which diminishes in by n, will reduce the

above integral to one that can be directly integrated.
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Instead of substituting in [A], as might readily be done, it is best

to apply to particular problems the same mode of procedure that was

used in deriving the general formula. There are two advantages in

this. First, it makes the student independent of the formulas, and

second, when several reductions have to be made in the same problem,

the work is generally shorter. [See Ex. 4.]

Accordingly assume

fx\d2 - xrf dx = A (x(a2 - x2y dx + Bx2 (a2 - x2)\

the values of X and ft having been determined by the previously given

rule.

Differentiate, and divide the resulting equation by x(a2 — x2y.

This gives .6
x2 = A + B(2a 2 -5x2

),

from which, on equating coefficients of like powers of x,

o 5

hence,

(x3^d2 -x2 dx =—( (a 2 ~ x2
)
* xdx-\ x\a2 - z2)*

= - ^(2 a 2 + 3x2
) (a*-xrf.

:. 2. (Vx2Ex. 2. \ Vx2 -2x -6 dx.

By following the suggestions of Art. 118, this integral can be re-

duced to the form

C Vz2 - 4 dz,

in which z = x — 1.

Assume

jV - 4)Klz = A§(z2 - 4)~^ dz + Bz(z2 - 4)i

In determining A notice that m = in both integrals, so that

X = + 1 = 1. Also, fji = - £ + ! = £.
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Ex.3. ( V2 ax - xl dx.

The mode of procedure of Ex. 2 may be followed. Another method

can also be used, as follows.

On writing in the form

fa* (2 a -xy dx,

and observing that the integration of

jV* (2 <z -aO"~*tf*= J V2 ax - x2

can be performed (see Ex. 10, p. 222), it will be seen that integration

may be effected in the present case by reducing each of the exponents

m and p by unity. This is possible since n = 1 and m can accordingly

be diminished by 1. Hence assume

(V (2 a- xy dx = A 'jV* (2 a- x)* dx + B'x? (2 a- x)% .

The exponent of the binomial in the new integral may be reduced

in turn by assuming

faT* (2 a- a?)* dx = A" (x~? (2 a- x)~^ dx + B" x?(2a-x)K

When this expression is substituted for the integral in the second

member of the preceding equation, the result takes the form

( V2 ax - x2 dx = A (
dx + Bx*(2 a - a:)* + Cx?(2 a - xf,

J
.

a/2 ax - x1

in which A, B, C are written for brevity in the place of A' A", A'B",

B' respectively. The values of A, B, C are calculated in the usual

manner by differentiating, simplifying, and equating coefficients of

like powers of x.

The method just given requires two reductions, and hence is less

suitable than that employed in Ex. 2, which requires but one reduction.

The rule for determining the values of A. and /x may now be

advantageously abbreviated. Let m,p be the exponents of the
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two factors in the given integral, and m', p' the corresponding

exponents in the new integral. Of these two pairs, m, p and

m', p', one of the numbers in the one pair is less than the cor-

responding number in the other pair. This fact will be ex-

pressed briefly by saying that the one pair is less than the

other pair. With this understanding the preceding rule may

be expressed as follows

;

Select the less of the two pairs of exponents m, p and m', p'.

Increase each number in the pair selected by unity. Tliis gives

the pair of exponents A., /jl.

Ex.4, f * dx
.

(x2 + a2)*

Assume successively

(x\x2 + a2)~~2 dx = A' (x\x2 + a2)~2 dx + B'x\x2 + a2)"^,

(x4 (x2 + a2)~* dx = A" (x2(x2 + a 2)~* dx + B"x*(x* + a2)*,

(x2(x2 + a2)"* dx = A'"1j(x2 + a2
)

-
^ tte + i?'".r(.r2 + a2)i

These equations may be combined into the single formula

( x\x2 + a*)~*dx = A fj (x2 + a2)~^dx + Bx(x2 + a 2y

+ Cx*(x2 + a2)* + Dx*(x2 + a 2)""i

The values of the coefficients are found to be

A=-$a*, B=-, C = -—. D = —-
2 a 2 a 2

Hence

(x\x2 + a*)~* dx = ** +%<*** _ 3 a -2 log (X + VX2 + a 2).

J 2Vx2 •+- a'2
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In this example three reductions were necessary; first, a reduction

of type [X)], second, and third, a reduction of type [-4]. Can these

reductions be taken in any order?

The different possible arrangements of the order in which these

three reductions might succeed each other are

(1) UL Ul [2>] ; (2) 01], [Z>], [A]
; (3) [Z>], Ul [A],

of which number (3) was chosen in the solution of the problem. Of

the other two arrangements, (2) can be used, but (1) cannot. For,

after first applying \_A.~] (which would be done in either case), the new

integral is „ _ 3

\ x2(a 2 + x2
)

J dx.

If \_A~\ were now applied it would be necessary to assume

f x\a 2 + x2)~i dx = A ( (a 2 + x2)~i + Bx(a 2 + x2)~\.

This equation, when differentiated and simplified, becomes

x2 = A + Ba 2
,

a relation which it is clearly impossible to reduce to an identity by

equating coefficients of like powers of x, since there is no x2 term in

the right member to correspond with the one in the left member. It

will be observed that this is the exceptional case mentioned on page

232, in which m + np + 1 = 0.

EXERCISES

1. f (a 2 - x2y2 dx. 5. ( Va 2 -

2. f—^ 6. f_
J(>2 + 4)2 J x*

x2 dx.

dx

3. f
**

• 7 C—**
(x2 +a)

. C x2 dx /» 3
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9. (Vx^T^dx. 12. (
dx

•

10. f a;v2ox - x*dx. 13 f ^f
J ' J (y+ + i x + .3)3

r y/'^nx #2
, /•

11.
J
-^— dx. i4. j VI - 2 x - x2 dx.

15. Show that

f
dx _ 1 f a?

(9 _o\ C dx _~|

J 2 + c)»
~

2 c(> - 1) L (a;
2 + c)»-i

x K" U
'

}
J (x2 + c)«-U

'

16. f_^ 19. f

17
"^

sin0<70

(1 + e sin20)t

[Substitute cos = z.]

C xdx
J (*

2+7)2
'

20. jWa

ia
J

:—Hh^" 21. f («
2 - x2)'2

2 - s2
rfa:.

dx.



CHAPTER III

INTEGRATION OF RATIONAL FRACTIONS

121. Decomposition of rational fractions. The object of the

present chapter is to show how to integrate fractions of the

form
<f>(x)

wherein <f>(x) and if/(x) are polynomials in x.

The desired result is accomplished by the method of sepa-

rating the given fraction into a sum of terms of a simpler

kind, and integrating term by term.

If the degree of the numerator is equal to or greater than

the degree of the denominator, the indicated division can be

carried out until a remainder is obtained which is of lower

degree than the denominator. Hence the fraction can be re-

duced to the form

iM =aXn + bxn-l + ... +./M,
xP{x) x];(x)

in which the degree of f(x) is less than that of if/(x).

As to the remainder fraction ^ > ' . it is to be remarked in

the first place that the methods of the preceding articles are

sufficient to effect the integration of such simple fractions as

A A' _. Mx + n M'x+N '

.
P^±_Q _ (1)x—a(x — a)'

2 ' ' x,2 ±a2 ' (#
2±a 2

)
2 '

' x2+mx+ri

Now the sum of several such fractions is a fraction of the

kind under consideration, viz., one whose numerator is of

238
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lower degree than its denominator. The question naturally

arises as to whether the converse is possible, that is : Can

f(x)
every fraction ^-^ be separated into a sum of fractions of as

simple types as those given in (1)?

The answer is, yes.

Since the sum of several fractions has for its denominator

the least common multiple of the several denominators, it fol-

lows that if -7^- can be separated into a sum of simpler frac-

tions, the denominators of these fractions must be divisors of

$(x). Now it is known from Algebra that every polynomial

xf/(x) having real coefficients (and only those having real coeffi-

cients are to be considered in what follows) is the product

of factors of either the first or the second degree, the coefficients

of each factor being real.

This fact naturally leads to the discussion of four different

cases.

I. When if/(x) can be separated into real factors of the

first degree, no two alike.

E.g., xf,(x) = (x-a) (x - b) (x - c).

II. When the real factors are all of the first degree, some

of which are repeated.

E.g., if; (x) = (x-a)(x- b)
2 (x - cf.

III. When some of the factors are necessarily of the sec-

ond degree, but no two such are alike.

E.g., + (x) = (x2 + a2

)
(x2 + x + 1) (x - 6) (x - c)

2
.

IV. When second degree factors occur, some of which are

repeated.

E.g., t(x) = (x2 + a2

)
2 (x2 -x + l)(x-b).
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122. Case I. Factors of the first degree, none repeated.

When ij/(x) is of the form

ijz (xj = {x — a) (x — b)(x — c) • • • (x — n),

f(x) A . B G . N
assume J-\J- =

f- H h • • • H >

j/a(.t) a; — a x — b x — c £ — ft

in which .4, 5, C, •••, N are constants whose values are to be

determined by the condition that the sum of the terms in the

right-hand member shall be identical with the left-hand

member.

Ex. C*-** + *dz.
J x\ - 3 x + 2

Dividing numerator by denominator, we obtain

x3 — 3 x"2 -f a: a:

.r- a; + 2 x2 - 3 ar + 2

Assume — — = —-—- -f
(x-l)(a:-2) x-1 x - 2

By clearing of fractions, we have

(1) x = A(x -2) +B(x- 1).

In order that the two members of this equation may be identical

it is necessary that the coefficients of like powers of x be the same in

each.

Hence 1 = ^+5, = - 2 A - B,

from which A = - 1, B = 2.

Accordingly the given integral becomes

$(
x+^--^dz = ^+]og(x-l)-21og(x-2)

Alog *-*
.

2
&

(a; - 2)
2
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A shorter method of calculating the coefficients can be used.

Since equation (1) is an identity, it is true for all values of x. By

giving x the value 1 the equation reduces to 1 = A(— 1), or A = — 1.

Again, assume x = 2. Whence 2 = B.

EXERCISES

1
r dx . r (x2 - ab) dx

J x 2 - a2
'

" J (x - a) (x - b)
'

2. f
1 - 3 *^. 5. r__^f

J xs - x J x2 - 4 x + 1

3
r (x*-V2)dx 6 f_(x2 - l)dx

J x 2 + 4 x + 3

"

' J (x*

? f
x2 -2cx+flc- q& + &

J (x — a)(x — &)(x — c)

8. fx2 (x + a)- 1^*^) -1 ^-

9
r (3s + l)tfar

12 f__^£_J2x2 + 3x-2' " J x2 + 7 a; + 12

1Q
f (x2 + qft)<7x

13 f tf*

Jx(x -a)(x+ &)' ' J a 2x2 - i2
'

4)(4x2 - 1)

Jx.

11 f (' + *)*«
. 14. f_!

J 2 x - x2 - x3 J 1

sec 2 x e/x

tan*2x

[Put tan x = t.~\

123. Case II. Factors of the first degree, some repeated.

Fx r (ox2 -3x+l)^x
J x(x - l) 3

Assume

(1)
5 x2 - 3 x + 1 ^ ,1

[

B
,

C , D
x(x-l) 3 x x-1 (x-1) 2 (x-1) 3

To justify this assumption, observe that:

(a) In adding the fractions in the right-hand member, the least

common multiple of the denominators will be x(x — l) 3
, which is

identical with the denominator in the left-hand member.

el. calc — 16
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(6) Further, the expressions x, x — 1, (x — l) 2
,

(a; — l) 3 are the

only ones which can be assumed as denominators of the partial

fractions, since these are the only divisors of x (x — l) 3 consisting of

powers of a prime factor.

(c) When equation (1) is cleared of fractions, and the coefficients

of like powers of x in both members are equated, four equations are

obtained, exactly the right number from which to determine the four

unknown constants A, B, C, D.

Instead of the method just indicated in (e) for calculating the

coefficients, a more rapid process would be as follows.

By clearing of fractions, the identity (1) may be written

5 x2 - 3 x + 1= A(x - l) 3 + Bx(x - l) 2 + Cx(x - 1) + Dx.

Putting x = 1 gives at once 3 = D.

Substitute for D the value just found, and transpose the corre-

sponding term. This gives

5a;2_ 6z + 1 = A(x-1)* + Bx(x- 1)-+ Cx (x - 1).

It can be seen by inspection that the right-hand member of the

result is divisible by x — 1. As this relation is an identity, it follows

that the left-hand member is also divisible by x — 1. When this

factor is removed from both members, the equation reduces to

5 x - 1 = A (x - l) 2 + Bx (x - 1) f Cx.

Now put x = 1. Then C = 4.

Substitute the value found for C, transpose, and divide by x — 1.

The result is 1 = A (x - 1) + Bx.

By giving x the values and 1 in succession, we find that

A =-1, 5=1.
Accordingly, we have

r (5s»-3ar+l)tf* = (7 1 + _L_ + 4 »
)dx

J X(X-1Y J\ XX- (x-1)* (X-

= log
;

x(x-iy J\ x x-\ o-i) 2 (x-iy

x - l Sx - 5

2(x - l) 2
'
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EXERCISES

C dx
4 f (V2r+l)</g

" y{x-m* + v ' J^(x+ V2)2

Jx3(x-1) J 38(3 + 1)3

T xr/x 6 C 2(.r3 + ft
2*)*/*

J (x2 - a 2
)
2

'

' J a:
4 - 2 a 2x2 f a 4

'

7 f V2^
f
—

J (2 +(2 + V2 - V2 x) 8

8 rax* + n'2x2 + (a + \)x+a
dx

J x2(a + x)

9
r(.r3 - \)dx ±1 C (x2 -Ux+2G)dx
J x3 +3x2

'* 'J

10. f (ax2 + fa8)-1 rfx.

[Substitute .r — 3 = 2.]

12.
r x

'

2<lx
,

T .r
2 r/x

J (x-aY(-

[Substitute a; — a = 2.]

124. Case III. Occurrence of quadratic factors, none repeated.

Fx ±
C (4x2 + ox + ±)dx

' J (x'2 + l)(x2 + 2x + 2)'

Assume
.jn 4 x2 + 5 a: + 4 _ J x + i? Cx + />

O2 + l)(x2 + 2 x + 2) x2 + 1 x2 + 2 3 + 2

Then

(2) 4x2 + 5x+4=(^x + £)(z2 + 2a; + 2) + (Ca; + Z))(x2 + 1).

By equating coefficients of like powers of x

= A + C, 5 = 2 ,4 + 2 5 + C,

4 = 2/1+5 + A 4 = 2/3 + Z),

from which 4 = 1, 5 = 2, C - - 1, Z> = 0.

Hence the given integral becomes

C(x+ '2)r/x C X'lx „. , 1/ , ix, 11 *2+l
1 —5—1

J
~—;

;
= 2 tan- 1^ + tan" 1^ + l)+£log-—-^—-.

J x 2 +\ Jx 2+2x+ 2 x2 + 2.r + 2
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To make clear the reasons for the assumption which was made con-

cerning the form of equation (1), observe that since the factors of the

denominator in the left member are x2 + 1 and x2 + 2 x -f 2, these

must necessarily be the denominators in the right member. Also,

since the numerator of the given fraction is of lower degree than its

denominator, the numerator of each partial fraction must be of lower

degree than its denominator. As the latter is of the second degree in

each case, the most general form for a numerator fulfilling this re-

quirement (i.e., to be of lower degree than its denominator) is an ex-

pression of the first degree such as Ax + B, or Cx + D.

Notice, besides, that in equating the coefficients of like powers of x

in opposite members of equation (2), four equations are. obtained

which exactly suffice to determine the four unknown coefficients

A,B, C,D.

dx
Ex.2. (

J (x2 +2 +l)02 +2)

We can assume in this case -

—

(«+!)(« + 2)

(.r2 + l)(a;2 + 2) x2 + 1 x2 +

;ion x2 = t, the

, to which Case I is applicable.

For if we make the substitution x2 = t, the given fraction becomes

1

EXERCISES

±
C 4dx

5
C (ix-6)dx

J x8 + 4 x J x4 + 2 x'2

„ C xdx 6 C x dx
J (x + \){x2 +1)' J x* + x2 + 1*

3 f fix
7 C xdx

Jx3 + a8
'

' J (x - a)\x2 + a2)'

4
C (a2 -b2)dx 8 C (x* + 2x + 2)dx
J (x2 + a 2)(x2 + b2)'

' J (x - l)(x2 + 2x + 2)

9. f
2d*

J (x-lX^ + 1)
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125. Case IV. Occurrence of quadratic factors, some repeated.

This case bears the same relation to Case III that Case II

bears to Case I, and an exactly analogous mode of procedure is

to be followed.

Ex. f
2 *5 -*4 * 8 *8 + *,/*.

J O2 + 2) 3

Assume

2x5 -x4 + 8x* + i = Ax + B Cx + D Ex + F
(x'2 + 2)*

" x2 + 2 (xa + 2) a (^ + 2) 3
'

Whence, by clearing of fractions,

2x*-x* + 8xS+4=(Ax+B)(x2+ 2)
2+(Cx + D)(x2+ 2)+Ex + F. (1)

Instead of equating coefficients of like powers of x, as might be

done, we may calculate the values of A, B
y
C, ••• by the following

briefer method.

Substitute for x2 the value — 2, or, what is the same thing, let

x = V— 2. This causes all the terms of the right member to drop

out except the last two, and equation (1) reduces to

• - 8V^2 = EV^2 + F.

By equating real and imaginary terms in both members, we obtain

- 8 = E, = F.

Substitute the values found for E and Fin (1), and transpose the

corresponding terms. Both members will then contain the factor

x2
-f 2. On striking this out the equation reduces to

2x* -x2 + ±x + 2 = (Ax + B)(x2 + 2) + Cx + D.

Proceed as before by putting x2 = — 2. Whence

4 = CV^2 + D,

and therefore = C, 4 = D.
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Substitute these values, transpose, and divide by x2 -f 2. This gives

2x -1 -Ax + B,

whence A = 2, i? = - 1.

The given integral accordingly reduces to

J x2 + 2 J (x-2 + 2) 2 ^ (**+ 2) s

The first term becomes

J x2 + 2 ^ z 2 + 2 yo v 2

The second, integrated by the method of reduction (Chap. II),

8"ives x 1 . . x
tan -1

& + 2 V2 V2

Finally, by using formula I the last term is integrated immediately.

Hence

f 2 xb - xA + 8 xs + 4 , , / o , \ ,
a:

J (xl -4- 2V ir-
2 -4- 2(z2 + 2)

3 ° v
x2 + 2 (x-2 + 2)2

EXERCISES

+ 1/ •> a:
2(ar2 +l) sJ V^2 + 1/ J x2(x2 + l) 2

2. f^ + ^' + ^fe. 5. f^ + ^'^rft
J (x2 -ha2

)
2 J (x2 + a2

)
2

3
C 2xdx

6
C x6 dx

J (1+ x)(l+x2
)
2

'

* J(l + x2
)
8

"

[Ex. 6 can also be integrated, and more easily, by means of the

substitution 1 + x2 = £.]

The principles used in the preceding cases in the assump-

tion of the partial fractions may be summed up as follows

:

Each of the denominators of the partial fractions contains one

and only one of the prime fac'ors of the given denominator.
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When a prime factor occurs to the nth power in the denominator

of the given fraction, all of its different powers from the Jirst to

the nth must be used as denominators of the partial fractions.

TJie numerator of each of the assumed fractions is of degree

one lower than the degree of the prime factor ichose power occurs

in the corresponding denominator.

126. General theorem. Since every rational fraction can be

integrated by first separating it, if necessary, into simpler frac-

tions in accordance with some one of the cases considered

above, the important conclusion is at once deducible

:

Hie integral of every rational algebraic fraction is expressible

in terms of algebraic, logarithmic, and inverse-trigonometric

functions.



CHAPTER IV

INTEGRATION BY RATIONALIZATION

At the end of the preceding chapter it was remarked that

every rational algebraic function can be integrated. The

question as to the possibility of integrating irrational func-

tions has next to be considered. This has already been

touched upon in Chapter II, where a certain type of irrational

functions was treated by the method of reduction.

In the present chapter it is proposed to consider the sim-

plest cases of irrational functions, viz., those containing

y/ax -f- b and yW2
-f bx -4- c, and to show how, by a process

of rationalization, every such function can be integrated.

127. Integration of functions containing the irrationality

•y/anc + b. When the integrand contains -y/ax + b, that is,

the nth root of an expression of the first degree in x, but no

other irrationality, it can be reduced to a rational form by

means of the substitution

y/aoc -\-b = z.

Ex. 1. Ki
dx

x + 3 -- 1

Assume V2 x + 13 = z,

that is, 2 x + 3 = z2
.

Then dx = z <h,

and f
dx _ C zdz z+ log(z-l)

V2 x + 3 - 1 sz-i

= V2 .rT~3 + log (V2T+3 - 1).

248
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j-l + «*
r
**-1 + X* — X1 — VI

x z + a:

It would appear at first sight that this integrand contains several

irrationalities, viz., Vx, Vx, Vx. It is readily seen, however, that

they are all powers of Vx, and hence the substitution Vx = z will

rationalize the expression to be integrated.

EXERCISES

4.

5.

f dx

K Vx + 1

S;
fix

/x+ Vx

f
dx

dx

(x - l)Vx

dx

(x — a — b2) Vx — a

5-
2 Vx - 1 -f x x7 + x

i
l+^l dx.

When two irrationalities of the form Vaa 4- b, -Vex -f d

occur in the integrand, the first radical can be made to dis-

appear by the substitution

Vax -\-b = z.

The second radical then reduces to

V
C

a
(z*-b) + d,

and the method of the next article can be applied.

128. Integration of expressions containing Vaoc2 +bx + c.

Every expression containing Va.T2 + bx + c, but no other

irrationality, can be rationalized by a proper substitution.

Two cases are distinguished.

(a) When ax2
-f bx + c has real factors. We may then write

the quadratic expression in the factored form

ax2
-f bx + c = a (x — a) (x — /?), (1)
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in which a and ft are real. Introduce a new variable t by

means of the formula

VaX2 + bx + c = t(x — a)

.

(A)

Square both members of this equation and replace the left

member by means of (1). This gives

a(x-a)(x-(3) = t
2(x-a)2

.

On canceling x — a and solving for x we obtain as the equa-

tion of transformation .9

x= «tr-aP
m (2)

Hence x (and therefore dx) is rationally expressible in terms

of t, while the radical reduces to

[
at2 -a(S 1

_ t
2 -a

at(a — /?)

f-a (3)

which is also rational in t. The substitution of these expres-

sions in the proposed integrand gives a rational fraction which

may be treated by the methods of the preceding chapter.

(b) When a, the coefficient of x2
, is positive.

Make the substitution

Vase2 + bx + c = Va- x + t. (B)

By squaring both members and solving for x we obtain

b - 2Vat

while the radical is expressible in the form

Vat2 — bt-\-^fac /K x

-p > \»)

2Vat-b
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and hence the integrand becomes rational when expressed in

terms of t.

The only case that is not included in (a) or (6) is that in

which the factors of ax2 + bx + c are imaginary and the coeffi-

cient a is negative ; the radical is then imaginary for all values

of x. Although the integral can be obtained (in an imaginary

form) by either of the preceding substitutions, this case does

not arise in practical applications of the calculus and will not

be considered further.

Ex. 1. f
dx

J x + vV-2 + 2 x - 1

Formula (B) gives

Vx2 + 2x-l = x + t,

whence, by solving for x, we obtain

,_ '
2 +l

2(1 -

_ /2 i 9 j J. J
and accordingly dx =— ——

- dt,h y
2(1 - 2

^ + Dx-U - fi + 2< + 1

2(1 -

When these expressions are substituted in the above integral it

reduces to
r (- t* + 2t+l)dt

2(1 + 2

The work of integrating may be facilitated by means of the trans-

formation 1 -f t = 2. The result, in terms of x, is

h(x - VV2 + 2x - 1) +
1 - x + Vx2 + 2 x - 1

+ 2 log (1 - x + Vx2 + 2 x - 1 ).
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Ex.2, r Vl +*</*_.
^ (1 - *) VT - X

By rationalizing either numerator or denominator we obtain

Vl — x 2 as the radical part of the integrand.

Formula (A) gives Vl — x'
2 = 7(1 — x),

whence JI±* = *, (1)
'1 — x

or
J-
±^ = <», (2)

1 — x

and hence, by differentiation,

2dx

(\- xy
= 2tdt. (3)

Add 1 to both members of (2) and combine the two terms of the left

member. The result is

(4)
o

1 -X
= t

2 +l.

1) ividing (3) by (4), we have

rfx _2tdt

Now multiply (1) and (5) together and integrate. We obtain

f
/l + x dx r 2 t

2 dt

J^l -x '

1 -x~ J t'
2 + 1

= 2
jrr^_ 2tan-iJr±Z
'1 — a: '1 — a:

-J

EXERCISES

(1 -x)(l -Vl -x'2
)

dxr dx
J V2 x2 - 3 x + 1 [V2xa -3x-+ 1 + V2(a; - 1)]



INTEGRATION BY RATIONALIZATION 253

We can rationalize also by means of a trigonometric substi-

tution. First reduce ax2 -\-bx + c to the form ±t2 ±k2
, as in

Art. 118, and then make one of the following transformations:

In k2 — t
2 put t = k sin 0,

in t
2 — k2 put t = k sec 0,

in t
2 + k2 put t = k tan 0.

Since V— t
2 — 1& is imaginary, we shall exclude this case from

consideration.

The resulting trigonometric functions can then be integrated

by methods to be explained in the next chapter.

129. There is one case in which a different transformation

leads more rapidly to the desired result. If, after reducing

the terms under the radical sign to one of the simple forms

mentioned in the preceding paragraph, the integrand can be

expressed as the product of t dt and a function containing only

even powers of t, then we may substitute

y/ ± t
2 ±k2 = Z.

For this gives t
2 = ± (z

2 ± k2

)

and tdt = ±zdz,

and hence the integral takes a rational form in z.

EXERCISES ON CHAPTER IV

1 f (— ^s + 4rx)dx

[Notice that Art. 129 is applicable.]

2. f t(x-a)%-\-\dx 3 C y/J+ldx
Jo(x-a)$-(x-a)i' V7+1 + 2
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4. f
dx

8. f
,lx

J x + Vx-1 J * + Vx2 - 1

5- j-^4- 9. fi+^tf*
*^

(« + *)* J 1 + %x

6. f(2- 3 *-*)<**.
10 . f_x3 dx

x — 3 x 6 + 5 x* v a'2 — x2

7 f dx
-,, ( y/a*-x*dx

[Use trigonometric substitutions in the following exercises.]

</x
12

13.

14.

*" x2 "" (x2 + a2)s

f ^ . 17. f
rf*

.

J
(x'2 +a 2)^

J
(a?-x*)%



CHAPTER V

INTEGRATION OF TRIGONOMETRIC FUNCTIONS

130. In regard to the integration of trigonometric functions,

it is to be remarked in the first place that every rational trigo-

nometric function can be rationally expressed in terms of sine

and cosine.

It is accordingly evident that such functions can be inte-

grated by means of the substitution

sin x — z.

After the substitution has been effected, the integrand may

involve the irrationality

Vl — 2T [ = COS X ].

This can be removed by rationalization, as explained in the

preceding chapter, or the metnod of reduction may be employed.

The substitution cos x — z will serve equally well.

It is usually easier, however, to integrate the trigonometric

forms without any such previous transformation to algebraic

functions. The following articles treat of the cases of most

frequent occurrence.

131

.

Csec2nx dx, fcsc
2w x dx.

In this case n is supposed to be a positive integer.

If sec2n# dx is written in the form

sec2n~-.r • setfxdx = (1 + tan2 x)n
~ld(tan a?),

255
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the first integral becomes

f(tan2
cc + l) n- 1d(tan x).

If (tan2
a? + 1)"

-1
is expanded by the binomial formula and

integrated term by term, the required result is readily

obtained.

In like manner,

I csc2nx dx =
f
csc2"~ 2# «csc2

a; dx

= — f(cot2^ + l)n~V/(cot x).

This last form can be integrated, as in the preceding case,

by expanding the binomial in the integrand.

The same method will evidently apply to integrals of the

form

I tanm.T sec2n# dx, I cotTO# csc2hx dx,

in which m is any number.

EXERCISES

1 f (Jx
5

f (1 -cosxydx
J cos4z

*

sin 4
.*:

r 6 C tjx

2.
J

CSC 4X dx. ' J sin4x. CQS4X (CQS
4X _ S j uV)4

3. \secexdx. 7. i - [= 1 tan~ 8
.r sec4xdx'] .

J J sin3x cos x J

4 C ^x q rcos2ar dx
J ain^x cos 8* J siii°x
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132. fsecwx tan
2n+1

sc dx, fcsc
m^ cot

2n+1
sc da.

In these integrands n is a positive integer, or zero, so that

2)i + l is any positive odd integer, while m is unrestricted.

The first integral may be written in the form

I secm-1aj tan2n
a; • sec x tan x dx

= I secm_1a;(sec2# — l)'V?(sec x),

which can be integrated after expanding (sec 2
.c — l) n by the

binomial formula.

Similarly,

I cscTO# cot2n+1# dx = I cscm_1# cot2n# • esc x cot x dx

= — I cscm_1x(csc2
a; — l) n

c?(csc x).

EXERCISES

1. \ sec2* tan 3x dx. 5. I tan5* dx.

2. f csc
8* cot5* dx. 6. f

sm3-r dx
[ = fsec*"8* tan8* tfx]

.

•J J cos"* J

f sec a* , r
Jcot5a* 7/

J
tan a: dx.

4. l : in x cot3* (/*. 8 i cot x dx.

EL. CALC. 17
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133. CtsiVL
nacdx, Ccot

nocdx.

The first integral can be treated thus :

I tsin
nx dx = M tann~2

• tan 2# dx

=
f
tann_2^(sec2

ic — l)dx

^""^
'Un-'xdx.

When n is a positive integer, the work of integration may-

be rapidly carried out by writing t for brevity in place of tan x

and then putting t
ndx in a different form by means of the

following process. First, divide t
n by £

2 + 1; the quotient is a

polynomial of the form t
n~ 2 — t

n ~~
A + t

n ~ G — •••, while the re-

mainder R is either ± 1 or ± t according as n is even or odd.

Then, since the dividend equals the product of divisor and

quotient plus the remainder, we have

«•=(«•-" - r- 4 + r~ 6
)(t

2 + 1) + R.

But since (tan 2# + l)dx = sec2x dx = d(tan x)= dt,

we have

Ctsmnx dx = C(tn
~ 2 - r~* + *

n~6 )^ + f^ da; -

For example,

ftan8# dx = C{f -t* + t
2 -- l)dt + Cdx,

and
J
tan7x dx = \ (f — f + t) dt — (tan x dx.
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The integral
J
cotn# dx can be treated in a similar manner,

in case n is a positive integer.

For any value of n we have

j cotn # dx = I cotn-2 # aot2xdx

= I cotn_2 #(csc2 # — l)dx

= _ COt- 1
.T _ Ccotn-2 xdXt

n-1 J

Since tan x and cot x are reciprocals of each other, the above

method is sufficient to integrate any integral power of tan x or

cot x.

Another method of procedure would be to make the substi-

tution tan x = z, whence

j tann xdx= j
—

-

(h

If the exponent n is a fraction, say n = -, the last integral

can be rationalized by the substitution z = u q
.

It is evident from this that any rational power of tangent

or cotangent can be integrated.

EXERCISES

1. j cot*xdx. 3. ( (tan x - cotx) 3 dx.

2. \ tau s axdx. 4. ( (tann x + ta,nn
- 2 x)dx.

5. j tan 8 x dx.
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When n is a positive integer show that

^ d. 9n i tan2n_1 x tan 2"-3
a;

, ,
, n „ 1A x

6. 1 tan 2" x dx = h ••• 4- (— l) n-1 (tan x — x).
J 2n- 1 2n-3 V J K '

r> Ct. 9„a.i j tan 2n x tan2"-2
a:

7. \ tan2"+1 xdx =

+ ••• + (— l)n_1 (J tan 2
a; + log cos a;).

134. fsium x cos** x dx.

(a) Either m or n a positive odd integer.

If one of the exponents, for example m, is a positive odd

integer, the given integral may be written

j sin"
1-1 x cosn x sin xdx = — I (1 — cos2 x) 2 cosn x d (cos x).

Since m is odd, m — 1 is even, and therefore —-— is a
Z

positive integer. Hence the binomial can be expanded into

a finite number of terms, and thus the integration can be

easily completed.

E x. ( sin 5 xVcos xdx.

According to the method just indicated this integral can be re-

duced to

— ( sin4 xVcos x d(cos x) = — \ (1 — cos2 a;)
2(cos a;) 2 c?(cos x)

= — | cos 2 X + \ COS * x — T
2
T cos *~ X.

EXERCISES

1. (sin* xdx. 3. (-

2. j*sin3a:cos 4 a:rfx.
4>

J cos2 xj/^

_ C sin 8 x dx

J VI - cos a;

'cos5 X

sin x
dx.

' sin f
' x dx
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(b) m + n an even negative integer.

In this case the integral may be put in the form

J^H^. cosTO+n x dx = ftan ma; sec- (m+n) x dx,
COSm X J

which can be integrated by Art. 131, since the exponent

— (in -+- n) of sec x is an even positive integer.

fcx. \ dx.

COS^ X

The integration is effected in the following steps

:

C y/s\\\xdx Ct- h 4 /

J
—^= = \ tan 2 x sec4 x dx
Vcos x cos4 x J

= \ tan^ x(tan2 x + 1) d (tan x)

= 2 tan^2(! + \ tan2 a;).

EXERCISES

dx
1. (^dx 4. f_

J sin 4
ar ./ sm 4x cos-6 x

2. r^_. 5. f
J sin 6

a:

*

Vsin3 x cos5 x

3. f ^*. 6. p""^**,.
J sin 8 x J cosn+2 x

(c) Multiple angles.

When m and ?i are both even positive integers, integration

may be effected by the use of multiple angles. The trigono-

metric formulas used for this purpose are

1 — cos 2 x
sin- x =

cos-a;

sin x cos x

2

1 4- cos 2 x

2

sin 2 #
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Ex. ( sin2 x cos4 x dx.

\ sin2 x cos4 x dx = I (sin a: cos x) 2 cos2 x dx

sin 2 2x1 + cos 2 x

-J

= - fsin2 2 x rfx + — f sin 2 2 x cos 2 x rf(2 x)

111 -

=§J-
- dx+1 f 1 — cos 4 x , ,1 sin 3 2 x

dx -\

2 16 a

= j & x - e¥ sin 4 x + 3
X

8
- sin 8 2 x.

EXERCISES

1. ( cos2 x sin2 x </x. 3. j sin 4 x cos4 x tfx.

2. ( sin2 x cos6 x g?x. 4. I (sin4 x— cos4 x) 4
</x.

5 C^lldx= f C
1 -cos2 x)2^ = f(sec2 x-2+ cos2 xyx.

J cos2 X J COS2 x J

(d) Reduction formulas. Integrate
J
sinm# cosn x dx by parts,

taking u = cos*
_1

a*, cfa = sinm# cos x dx,

sinm+1a*
whence du = — (n — 1) cosn -a; sin x dx, v = ,

m+-

1

and therefore

frill** cos'a! dx = sin"+'a;cos
"'"1

-c +'^4 fsin"*2 cos""2* dft
c/ m +

1

7/1 + 1./

In the last term replace sin2
a- by 1 — cos2# and separate the

integral into the two terms

I sinm# cosn_2x dx — I sinma; cosn# dx.
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Transpose the second integral and unite with the similar

integral in the left member. After dividing the resulting

equation by we obtain the formula of reduction
m + 1/„ j sinm+1# cosM_1x . n—1 C - m n-i ismm# cosw# ax = 1 I smm# cosn zx dx

ra + ?i m + nJ

by means of which the exponent of the cosine factor may be

diminished or increased by 2 according as the integral in the

left member or that in the right member is taken as the given

integral.

In like manner a reduction formula may be deduced which

decreases or increases the exponent of the sine factor by 2.

The details are left to the student as an exercise. The

result is

/- m n i sinw_1x cos"+1x . m—1 C - m-2 n ^smmx cosnx ax = 1 I smm lx cosn# ax.
m 4- n m 4- nJ

The two preceding formulas, when solved for the integrals

in the right members, and m (or n) increased by 2, become

/• m n i sinm+1# cosn+1 .
/c . m-\-n+ 2 C . m n+2 jsmmaJcosna;aa;= ! !— I smmxcosn+'xax,

n + 1 n+ l J

Csinmx cosnxdx = smW+la? cosn+1a; + m + n + 2 Csinm+ 2X G0Snxdx ,

J m +

1

m-j-1 J

Whenever the values of m and n are such that one of the

three preceding cases, (a), (6), (c), is applicable, the integration

can generally be performed more quickly by one of those

methods.
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EXERCISES

1. (sin*xdx. 2. (99&*dx.
J J sin2 x

[In Ex. 2 after one reduction, diminishing the exponent of cos x by

2, Art. 133 may be applied.]

3 rsin4
:r , . f dx _ Cco^xdx

J cos x J sin3 2 a; J sin4 a;

135. /
eta r doc r

a+bnosna J a+bsmnw J a +bcosncc' J a+ bsinnw' J a + b sin noc+c cos nx

These forms can be integrated by expressing them in terms of

the half angle and then in terms of tan - -.

Ex.l. J
dx

5 + 4 cos x

By making use of the trigonometric relations

cos2 - + sin 2 - = l,

2 2

cos x = cos 2 -— sin2 -

,

2 2

the denominator may be written in the form

5^cos2 |+sin 2
|)+ 4(cos2 |-sin2 -V

which becomes sin2 - + 9 cos2 - on collecting the terms ; whence
2 2

dx

1

sin2!+9
,,x

cos2 -

2
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Now divide numerator and denominator by cos2 - and bear in mind

1 x
that = sec2 -. This gives

„ t 2
cos2-

i'(S)

J
- = ? tan-1 (i tan-

tan2 - +9 3 Vd 2

Ex.2, J-
t/x

sin 3 a: + 1

Express the denominator in the form

4 sin — cos — + ( sin 2 —- + cos2 —-
J

.

3 a:

Then, after dividing both terms of the fraction by cos2 — , the given

integral becomes r^ 3 x
sec2 — dx

2

J tan2 ^+4 tan— + 1

Now make the substitution tan— = t and apply Art. 118.

It will be observed from these two problems that the aim is

to put the denominator in the form of a homogeneous quadratic

expression in sine and cosine functions. Then, when both terms

of the fraction are divided by the square of the cosine, the

denominator becomes quadratic in the tangent function while

the numerator can be expressed as the differential of the tangent.

EXERCISES

1. ( ^
. 5. f ^

.

J 5 + 3 cos 2 x J (a sin x + b cos x) 2

2. (—«*
. 6. f

<"
J 5 — 3 sin x J a 2 sin 2 x + b2 cos2 x

dx „ C dx
t. (—dx

. 7. f—
J 1 - 2 sin 2 x J 1 +

t. f * 8. f—
J a sin x -f b cos x J 1 +

cos2
a:

ax

sin x + 2 cos a:
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136. I e
ax

sin nx dx, I e
ax

cos nx dx.

Integrate | eax sin nx da; by parts, assuming

u = sin nx, and cfa = eax dx.

This gives ^. *

/eoz sin nx c?x = - eax sin nx | e
ox cos nx dx. (1)

Integrate the same expression again, assuming this time

u = e
ax

, dv = sin nx dx.

Then

/eax sin nxdx = eax cos nx + - ( e
ax cos nx dx. (2)

n nJ

Multiply (1) by - and (2) by - and add. The integrals in

the right members are eliminated, and the result is

J„
. 7 eax(a sin nx — n cos nx)

e
ax sin nx dx =—* L •

a2 + n 2

By subtracting (1) from (2), the formula/, eax(n sin nx 4- a cos nx)
e
ax cos nx dx =—* — L

a~ + iv

is obtained.

EXERCISES ON CHAPTER V

1. Derive the reduction formula

C,ecnx dx = tanssec*-** +
n-2 r

ecn_ 2jc d^
J n — 1 n — \J

[Integrate by parts, taking u = secM
~ 2

:r, dv - sec2
a: dx.~]

2. Derive

fcsc»x & = - cot * csc;~2*
+^? fce-'* <**

J W — 1 n — JV

J sin x cos a; J cos5 x



INTEGRATION OF TRIGONOMETRIC FUNCTIONS 267

5. f **, 9. (
S™^dx.

J cos x sin2 x J ex

10. \ e2x sin2 x dx.6 - y^-^dx. 10 . f
J cos3 x J

7- I
• 11. i <?

x sin 2 a: sin a: efa.
J

(1 -x)Vl - a.-
2 J

[Put a; = cos $] . [Hint. 2 sin 2 a: sin a: = cos x — cos 3 a\]

f - a:

8. i e 2 cos~dx.

12. Show that

fsin ax sin fta: tfa; = sin
(a " &^ - sin + *>*.

J 2(a - ft) 2(a + ft)

Use the trigonometric formula

sin a sin ft
= i [cos(cc — j3)— cos(ct + /?)].

13. Show that

r • 7 7 cos (a — ft)ar cosfa + b)x
\ sin aa: cos bx dx = * *- *

—

^ '
•

J 2(a - ft) 2 (a + ft)

14. Show that

fcos a* cos bxdx = sin (g- ft) a; sin(q + ft)*

J 2(a-ft) 2(a + ft)

15. i sinn x cos 3
a; da:. 19. I—— - :~~;

J J sin x cos3 x — sin3 x cos a:

16. j"^L_. 20. f^^-.^ '.A 4? ^ sin4 .r oos4

sin^a: cos-* a:
sin* a- cos* x

17. j*(tan a: + cot a-) 6 dx. 21. j*
4
^ <fo.

18. ( «« f a sin a: + ft cos a:

J (1 + cos a:)
3 zz

' J a Bin x + o cos
~ dx -

ft COS X

[Hint. Assume

a sin x + 6 cos a: = .4 (a sin x + ft cos x) -f- i?(« cos x — ft sin a:)

and determine J. and Z? by equating like terms. Treat Ex. 23 in

like manner.]

23. (
aeX + he

~ X

dx. 24. f
sin (* + q >

<fa.
^ «e* + fte~

x J sin (a; + ft)



CHAPTER VI

INTEGRATION AS A SUMMATION. AREAS

137. Areas. The problem of calculating the area bounded

by given straight or curved lines can be solved by means of

the Integral Calculus provided that the equations of the boun-

dary curves are known and satisfy certain restrictions.

Suppose it is required to determine the area limited by a

continuous arc of a curve whose equation, in rectangular coor-

dinates, is written

in the form

y =/(»), (i)

by the two ordinates

x — a and x = b, and

by the it*-axis; that

is, the area APQB
(Fig. 59).

We proceed as

follows. It is as-

sumed in the first

place, for the sake of simplicity, that/(#) is always increasing

(or always decreasing) between x = a and x = b, so that a vari-

able point on the arc PQ is continually rising (or falling) as

its abscissa x increases. Suppose, further, that every ordinate

between x = a and x = b cuts the arc PQ in but one point. Let

2G8

Fig. 59
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the interval A to B (Fig. 59) be divided into n equal intervals

AAV AlA2 '", An_1 B, each of length Ax, so that

interval AB= b — a = n • Ax.

At each of the points of division A, A lf A2,
• ••, B erect ordi-

nate^ and suppose that these meet the curve in the points

P, Px , P2,
• ••, Q. Through the latter points draw lines PPi,

P1 R2) PzR& ' '
' Pn-i Rn parallel to the x-axis.

A series of rectangles PAX , PXA>, • • • is thus formed, each of

which lies entirely within the given area. These will be re-

ferred to as the interior rectangles. By producing the lines

already drawn, a series of rectangles SA1} SiA2J
••• is formed

which will be called the exterior rectangles. It is clear that

the given area will always be greater than the sum of the in-

terior rectangles and always less than the sum of. the exterior,

or, expressed in a formula, "^

PAX + iVl2+ ••• +Pn- 1B< Area APQB < SA 1 + S1
A i + •••

+S.-1-B. (2)

The difference between the sum of the exterior and the sum

of the interior rectangles is

SP1 + ^fi2+- + £„_! Rn = rectangle Sn_ x T = TQ • Ax. (3)

As we suppose the curve to be continuous between P and Q,

the line TQ is of finite length.

If the number n of equal parts into which AB is divided is

increased, the first sum in (2) increases in value and the

second sum in (2) decreases. Moreover, as their difference

TQ • Ax, given in (3), approaches the limit zero, it follows

that the limit of the sum of the exterior rectangles is equal to the

limit of the sum of the interior rectangles when n = cc, that is,

when Ax = 0.
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Since the required area always has a value intermediate

between the two sums, it follows that the area is equal to the

limit of either sum. So that, for example, we have

^^ = A^O tPA> + P*A*+ - + Pn~lBl (
4

)

The second member of this equation may be expressed in

terms of the function f(x) which appears in the equation (1)

of the given curve. For,

area PA± = AP • Ax = f(a)Ax,

since AP is the ordinate y when x = a.

Similarly,

area PiA2 = A X
PX

• Ax = f(a + Ax) • Ax,

area P2A3 = A2P2
• Ax = f(a + 2 Ax) • Ax,

area Pn- YB = An_iPn _i • Ax =f(a + n — 1 Ax) • Ax.

If these expressions are substituted in (4), it takes the form

area = A^o[/(a)+/(a + A 'T
) + /(a + 2Aa;)+ -

+ f(a + n-lAx)-]Ax. (5)

As it now stands, the formula just derived is of little prac-

tical value for computing areas. This is due to the fact that

there is no general method for calculating the sum of the n

terms given in brackets in the second member of (5).

Fortunately, the value of the limit of this sum when n = cc

and Ax = can be calculated by integration as we shall now

proceed to show.

138. Expression of area as a definite integral. Denote the

function arising from the integration of f(x) by F(x), that is,
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let F(x) = ff(x) dx,

By definition of the derivative of F(x) we have

lim F(x+ Ax)-F(x) _ f(
.

A

The quotient
F (x + Ax

)
F

(
x
) may be written in the form

f(x) -J- <f>,
in which

<f>
approaches zero at the same time as Ax,

otherwise the limit of the quotient when Ax = could not be

f(x). From this relation follows, on multiplying by Ax,

F (x+ Ax)-F (x) =f(x) • Ax + <£ • Ax. (6)

Next, in equation (6) substitute for x the successive values

a, a + Ax, a + 2 Ax, • • •, a + (n — 1)Ax.

We thus deduce the following series of n equations, in which

<£i> 02?
••* are used to denote the different values which <£ may

take: F(a + Ax)-F(a)=f(a) -Ax+fa-Ax,

F(a + 2 Ax)— F(a + Ax)=f(a + As) • Ax + <£2 • Ax,

F(a + 3 Aaj)-2P(a + 2 Ax)=f(a + 2 Ax) • Ax -J- <£3 Ax,

F(a + n — l • Ax)-F(a + n-2 • Ax)=f(a + n- 2 Ax)Ax

+ <£n-i • Ax,

F(a + nAx)—F(a + n — 1 • Ax)= /(a -fn- 1 • Ax)Ax

4- <£* • Ax.

Let these n equations be added ; then all but two of the

terms in the left member of the sum cancel each other and the
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result may be written

F(b)-F(a)= [f(a)+f(a+Ax)+ ... +/(a + n-l • Ax)]&x

+ W>i + 02 + -+0B]Aa>,

in which b is written for a-\-n A#, since ?i A# = 6 — a.

Now let Aa; approach zero. The expression

(<fc + <fe-h ... +0B)Aa>

vanishes at the limit. For, let <£ denote the positive value of

the numerically largest term of the set
<f>u <f>2,

• ••, cf>n ; then we

have evidently

|(0i + <f>2 H +0») Aa;|^ (^-|-<I> ...(w terms)) A# = n<£ • Aa;

= wAa; • <£ = (6 — a) • 3>.

Hence, from the fact that ^m 3> = and that b — a is finite, it
Ax=0 '

follows from Art. 3 that

Hm(<k + 4>2 + .••0n)AaJ= O;

and therefore 2^(6) - F(a) = J^J[/(a) +/(a + Aa>) + ...

+f(a+n - 1 • Aa;)]Aa;. (7)

Now the right member of this equation is exactly the ex-

pression previously derived for the area APQB; hence,

area APQB = F(b) - F(a). (8)

To compute the value of the right member of (8), first obtain

F(x) by integrating f(x) dx. Having determined F(x), substi-

tute the values b and a which x takes at the extremities of the

arc bounding the given area and then subtract the second from

the first. This result may conveniently be represented by the

symbol

ff(x
)
dx

>
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which indicates both the integration to be performed and the

substitution of the two limiting values a and b for x. It is

called the definite integral of the function f(x) between the limits

a and b.

We thus obtain, as a final formula for area,

area APQB = f / (») 'dx. (9)

139. Generalization of the area formula. Instead of taking the

limit of the sum of the interior (or exterior) rectangles, a more

Y

Fig. 60

general procedure would be to take a series of intermediate

rectangles. Let x1 be any value of x between a and a + Ax, x2

any value between a -{-Ax and a -+- 2 Ax, etc. Then / (xr) Ax

would be the area of a rectangle KLAXA (Fig. 60) intermediate

between PAX and SAX ; that is,

PA.Kf^AxKSA,.
Likewise PXA2 <f(x2)Ax < S^A2, etc.

EL. CAI.C 18
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Hence,

sum of interior rectangles < [/(a?i) +/(^) + •••]^aJ

< sum of exterior rectangles,

and therefore (cf . Fig. 59),

area APQB =^o [/(&)+ f(x2) + ... + /«)] Ax. (10)

This result combined with (9) gives for the definite integral

the more general formula

:

fj(x)dx=£l [f{x1)+f(x2)+ -f(x„)-]Ax. (11)

140. Certain properties of definite integrals. From the defini-

tion of the definite integral
|
f(x)dx as the limit of a par-

ticular sum, certain important properties may be deduced.

(a) Interchanging the limits a and b merely changes the sign

of the definite integral.

For, if x starts at the upper limit b and diminishes by the

addition of successive negative increments (— Ax), a change

of sign will occur in formula (7), giving

F(a)-F{b)=£f{x)dx.

Hence,

f
a

f(x) dx = - Cf{x) dx.

(b) If c is a number between a and b, then

f
b

f(x) dx = Cf(x) dx + Cf(x) dx.
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(c) Tlie Mean Value Theorem.

The area APQB (Fig. 61), which represents the numerical

value of the definite integral may be expressed as follows.

Let an ordinate MN be drawn

in such a position that

area PSN= area NRQ.

If £ denotes the value of x cor-

responding to the point N, then

MN= f($), and

area APQB = rectangle ASRB
= MN-AB=f{Z){b-a).
Hence,

Cft*)** =f(gft> -a), (12)
%Ja

in which £ is some value of x between a and b. This result

is known as the Mean Value Theorem (compare Art. 39),

dx
is called the mean ordinate

f/(*)<
and the ordinate /(£) =^a -

b — a

between x = a and x = b. This is also called the mean value

of the function /(a?) between these limits.

The theorem may be expressed in words as follows

:

The value of the definite integral

£f{x)dx

is equal to the product of the difference between the limits by the

value of the function f(x) corresponding to a certain value x = f-

between the limits of integration.

(d) It is frequently desirable to make a change of variable

in the definite integral in order to facilitate the work of inte-

gration. It is obvious, from the nature of the definite integral,
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that the limits of integration must be changed so that in the

new integral the limits shall be the values of the new variable

corresponding to those of the old variable.

Ex. Evaluate \ v a2 — x2 dx.j>~2

Make the change of variable x — a sin 0, whence dx = a cos dO,

and therefore
n

f ° y/d'-x* dx = a2 ( * cos2 d6.

Here the limits for the new integral are determined by inspection

of the equation connecting x and 0, namely, sin 6 = -. It is seen that,
a

as x varies from to a, sin 6 varies from to 1. This corresponds to

a variation of 6 between the limits and -. The indefinite integral

is, by Art. 134 (c),

The substitution of the limits gives the value —

•

4

141. Maclaurin's formula. As an application of the mean

value theorem (Art. 140 (c)), we derive Maclaurin's formula

with the remainder term.

Let s and t be independent variables. Suppose J[s — 1\ to-

gether with its first n derivatives with respect to t, to be

continuous within the interval to tv Then we have by inte-

gration
£f\s-t)dt = -f{s-t) =f(s)-f(s-tl).

On the other hand if we integrate by parts, taking u =f'(s — 0>

dv = dt, we obtain

£
l

f'(s - t)dt =f'(s - t) • tT +jTV"(« -t)-tdt

*/o
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Integrate the last term by parts, taking u =/"{s — t), do = t dt.

By successive applications of this process we deduce the

formula

/(*)_/(* - tl)=f'(s - (,)«. +/'(•- ttfl +f'"(s - trfl + -

+ ~^-r-. Cf\s-t)t^dt.
(n — 1) \Jo(n-l)

By the mean value theorem we have

fV°(* - t
n~ l dt =f n)

(s - et^idhf-
1

• tx,
Jo

in which 6 is a positive fraction and Qt
x

is the same as £ of

(12). Inserting this in the preceding equation and substituting

s = x, t-L — x — a (hence s — tx
= a) we obtain as a final form

f(x)=f(a) +f' {a)(x-a) +-^(x - af + ...

+ (iS)l
/<"

)(a; _ 6{X - a^X - °>"-

If we replace by 1 — 0', the remainder term takes the form

given on p. 153, with 6' written in the place of 0.

142. Remarks on the area formula, (a) It is noticed that

the formula

Cf(x)dx= *™ [/(a) + /(a + Ax)+ - +/(o + ^=1 . Az)]A*

indicates two steps,— a summation, and a process of passing

to a limit. The differential /(x) dx which appears under the

integral sign may be regarded as representing the general

term/(x) Ax of the series to be summed, while the process of

taking the limit of this sum is indicated by replacing Ax with

the differential dx and prefixing the sign of integration.
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The general term f(x) Ax represents the area of an arbitrary

rectangle (of the set of interior rectangles) whose altitude is

the ordinate corresponding to an arbitrary x and whose width

is Ax. This is called an element of area. The definite integral

may then be thought of as indicating the limit of the sum of

all contiguous elements of area between x — a and x = b.

This notion of summation (followed by passing to the limit

Ax = 0) is a very useful one in applying the calculus to prob-

lems of geometry, mechanics, and physics. In each case an

application of this notion consists in finding the general ex-

pression for an element of the given magnitude (element of

area, element of mass, element of moment of inertia, etc.) and

then indicating the two steps of summation and taking the

limit by changing Ax to dx and prefixing the symbol * of the

definite integral. It must not be forgotten that in every case

it is necessary to prove that the limit of the sum gives pre-

cisely the desired result, f This we have already done in case

of the area formula.

(6) The element of area/(x) • Ax is positive when the cor-

responding rectangle is above the x-axis, since in that case f(x)

is positive, while Ax is positive if b>a. Accordingly, the

formula \ f(x) dx gives a positive value for an area above the

x-axis provided we take b>a.

Similar considerations show that the same formula gives a

negative value for an area below the x-axis.

(c) If the curve y=f(x) crosses the x-axis between the two

points A, B, then the area consists of a positive part APC,

* This symbol originated historically from the initial of the word sum.

f In some cases the limit of the sum is used as a definition of the magnitude

in question, as, for example, in the definition of the length of arc. (Art. 151.)
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B

Fig. (52 Q

represented by the integral
J

f(x) dx, and a negative part CBQ

represented by the integral I f(x) dx. The sum of these two

integrals, which (by Art. 140 b) is Y

equal to I f(x) dx, would accord-

ingly give the algebraic sum of the O

positive and the negative area,

((f) Some of the restrictions

placed upon the function f(x) in Art. 137 can be removed. In

the first place, suppose that f(x) is not always increasing (or

decreasing) as x increases from

a to b. Let ordinates be drawn

at the maximum and minimum

points of the given arc PQ (Fig.

63). These divide the required

area into several parts A', A",

A'" for each of which the ordinates satisfy the original condi-

tion of Art. 137, hence we conclude that

area = A' + A" + A"' =Cf{x) dx -f C*f(x) dx + Cf(x) dx

= Cf(x) dx, by Art. 140 (6).

A discussion of the methods to be employed in case f(x) be-

comes discontinuous, or is not singly valued in the assigned

interval, is postponed to Art. 143.

(e) Since f(x)=y, formula (9) may be written more briefly

area APQB= Cydx. (13)
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X
B

y=b
r

/
/ q

{' V=a' Lp
X

Fig. 04

(/) By exactly the same process used

in deriving (9), or (13), it may be shown

that the Me&A'PQB' (Fig. 64) bounded by

the curve PQ, the ?/-axis, and the two lines

y = a', y = b' is given by the formula

area A'PQB' = | x dy,

(g) If it is required to find the area bounded by several

arcs such as PQ, QR, ES, etc. (Fig. 65), we may calculate by

formula (9) the simple areas

APQB, BQRC, etc., and by

proper additions and sub-

tractions obtain the desired

area. Thus the area in Fig.

65 would be expressed by

Xb /*c r*c S*d

fY{x) dx +J&
f2(x) dx -

| f3(x) dx -J f4(x) dx.

1. Find the area bounded

by the curve y = log x, the

ar-axis, and the ordinates
— o <r —

* The symbol
la

- Area APQB (Fig. 66) =
/*8 -i8*
I \ogxdx = x(logx — 1)

= 3(log3-l)-2(log2-l)
(

Fig. 66
=log-^-l.

indicates that the values 3 and 2 are to be substituted for

x in the expression which precedes the symbol and the second result sub-

tracted from the first.
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2. Find the area bounded by the arc of the parabola y
2 = 4px

measured from the vertex to the point whose abscissa is a, the x-axis

and the ordinate x = a.

From the result show that the area of the parabola cut off by a

line perpendicular to the axis of the curve is two thirds the area of

the rectangle circumscribing this segment.

Does this result hold good for all parabolas?

3. Find the area between the x-axis and one semi-undulation of

the curve y = sin x.

4. Find the area bounded by the semicubical parabola y
2 = 25 x3

and the line x = 3.

5. Find the area bounded by the curve y
2= 4(x-f 5) 3 and the^-axis.

6. Find the area bounded by the cubical parabola y = x3
, the

y-axis, and the line y = 1.

7. Find the area bounded by the curve x + y
3 = 2 and the coordi-

nate axes.

8. Find the area bounded by the parabola y = 2 x2 and the line

y = 2x.

9. Find the area bounded by the parabola y = x2 and the two lines

y — x and y =2 x.

10. Find by integration the area of the circle x2 + y
2 = r2.

11. Find the area between the curve y = x(x — l)(x — 3) and the

x-axis.

12. Find the area bounded by the coordinate axes, the witch

8a 3
.

y = ——-—
-, and the ordinate x = xv By increasing x\ without limit,

x2
-f 4 a2

ftnd the area between the curve and the x-axis.

13. Find the area of the ellipse — + y— = 1.
a 2 b2

(* 14. Find the area included between the hyperbola xy = 36 and the

- line x -f y = 15.
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15. Find the area bounded by the logarithmic curve y = a
x

, the

x-axis, and the two ordinates x = xv x = x2 . Show that the result is

proportional to the difference between the ordinates.

16. Find the area between the curve y = (x2 — l)(x2 — 2) and the

x-axis.

17. Find the area cut off from the parabola (x — l) 2 = y — 1 by

the line y = x.

18. Find the area of the oval in the curve y
2 =(x — a)(x — b) 2

,

given a < b.

19. Prove that the area of the curve a 2
y
2 = x3(2 a — x) is equal to

that of a circle of radius a. Draw figures of the two curves (center

of the circle at the point (a, 0)) and compare.

20. Find the area of the loop of the curve y
2 = x4 4- xB

.

21. Given the curve of damped vibrations y = e~
x
sin x. Show

that the areas contained between successive semi-undulations of the

curve, and the positive x-axis form a geometrical series of alternately

positive and negative terms.

Find the sum of this infinite series and verify that the same result

may be obtained by integrating between the limits and go.

Find the total area included between the positive x-axis and the

curve (changing the negative areas to positive).

22. Find the area bounded by the hyperbola xy = a2
, the x-axis,

and the two ordinates x = a, x — na.

From the result obtained, prove that the area contained between

an infinite branch of the curve and its asymptote is infinite.

23. Find the area contained between the curves y
s = x and x8 = y.

24. Take the segment of the equilateral hyperbola xy = k2
, be-

tween two points P and Q. Show that the area between this arc and

the x-axis is the same as that between the same arc and the y-nxis.

25. Find the area bounded by the parabola Vx + Vy = Va and

the coordinate axes.
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26. Find the area between the curve y
2
(y

2 — 2) = x — 1 and the

coordinate axes.

27. Find the area common to the two ellipses

a2 b* ' b* a 2

28. Find the area enclosed by the curves y = sin x, y — cos x be-

tween two consecutive intersections.

29. Find the mean ordinate of the curve y = tan x between the

limits x = and x = - (see p. 275).
4

30. Find the mean value of the function sin x between the limits

and -; also of the function e^sinar.

31. Find the area of the loop of the curve

o a — x
V
2 = x2 .*

a + x

143. Precautions to be observed in evaluating definite integrals.

The method given above for determining plane areas in rec-

tangular coordinates involves two essential steps :

(1) To find the integral of the given function f(x) ;

(2) To substitute for x the two limiting values a and b, and

subtract the first result from the second.

Erroneous conclusions may be reached, however, by an in-

cautious application of this process. The case requiring par-

ticular attention is that in which f(x) becomes infinite for

some value of x between a and b, or at a or b. When that

happens, a special investigation must be made. The method

of procedure will be brought out in the following examples.

Ex. 1. Find the area bounded by the curve y(x - l) 2=c, the

coordinate axes, and the ordinate x = 2.
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A direct application of the formula gives

n cdx

^]: 2 c,

]6 is a sign of substitution, indicating that the

values b, a are to be inserted for x in the expression immediately

preceding the sign, and the second result subtracted from the first.

This result is incorrect. A glance at the equation of the curve

shows that f(x)\ = - becomes infinite for x = 1. It is
L (x — 1)'2J

Fig. 67

accordingly necessary to find the area OCPA (Fig. 67) bounded by an

ordinate AP corresponding to a value x — x', which is less than 1.

For this part of the area/(x) is finite and positive, and formula (9)

can be immediately applied, with the result

area OCPA = (* cdx
, = c- T = c— -c. 0<x'<l.

J
Q

(x _l }
2 O-l)J X'-I

If now x' is made to increase and approach 1 as a limit, the value

of the expression for the area will increase without limit.

A like result is obtained for the area included between the ordi-

nates x = 1 and x = 2. Hence the required area is infinite.

Ex. 2. Find the area limited by the curve y
8(x2 — a 2

)
2 = Sx3

, the

coordinate axes, and the ordinate x = 3 a.
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Since /(x) = — becomes infinite for x = a, it is necessary
L O2 - a2)tJ

in the first place to consider the area OPA (Fig. 68) and determine

Fig. 68

what limit it approaches as AP approaches coincidence with the

ordinate x = a. Accordingly

area OPA = £* 2xdx
^
= 3(x2 - a2)$T

(x2 — a2)f -*

whence

= 3(>'2 -a 2)* + 3a*,

[area OP.4] = 3ailim

x1 = a

In the same manner, the area A'P'QB has the value

3a 2 xdx P 2 l
6 a^ — 3(x 2 — a 2)

s,£

0<x'<a

a < x' < 3 a.

(x2 - a 2)*

As x' diminishes towards a, the area increases to the limiting value
2

6 aL Hence, by adding the two results, the required area is found

tobe 8al + 6a*=9ai

The same result is found by a direct application of (9), viz.

:

J-_2^ = 3(x2 _ a2)r|" = 9nS)
•" (x2 -a 2)f Jo

so that in this case an immediate use of the area formula gives the

correct result.
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Some of the details in such problems as the two preceding

may be omitted. It is unnecessary first to put x — x', a value

] ess than the critical one, and, after integration and substitu-

tion of limits, to let x' approach the critical value as a limit.

For this is clearly equivalent to taking the critical value at

once as the upper limit for the portion of the area to the left

of the infinite ordinate (or as the lower limit for the area to

the right of this ordinate).

Thus, in case of an infinite ordinate, the rule of procedure

becomes

:

Calculate separately, byformula (9), the two portions of area on

each side of the infinite ordinate and add the two results. If one

of these portions is infinite, it is not necessary to calculate the

other ; the required area is infinite.

The formula (9) for area has been deduced under the as-

sumption that the limits a and b are finite. It may happen,

however, that the curve y =f(x) approaches the x-axis as an

asymptote. It .might then be required to determine the strip

of area extending to infinity between the curve and its asymp-

tote. The method of procedure for such a case will be ex-

plained in the following example.

Ex. 3. Find the area bounded by the curve y(x2 + 1) = 1 and

the ar-axis.
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This curve being symmetrical with respect to the y-axis, it is

sufficient to calculate the area in the first quadrant. As our formula

of integration does not take account of the case b = co, we integrate

from to x' and in the result cause x' to increase without limit.

This limit will be defined to mean the area between the arc in the positive

quadrant, its asymptote, and the y-axis. It is evident that these steps in

the evaluation amount to a direct application of the area formula,

using the limits and co . The half area is, accordingly,

V = tan- ]
a; = tan-1 co — tan- 1 0.

Jo 1 + x 2 Jo

We are here confronted with the difficulty that the anti-tangent is

a many-valued function and there is a question as to which of its

values should be chosen. It is necessary in such a case to go back

and examine the limiting process just explained. The area OPQN is

equal to tan-1a;' — tan-*0. If x' approaches zero, this expression

should approach zero; and as x' increases continuously the area also

increases continuously. Accordingly, whatever value we choose for

tan_1 0, the limit of tan- 1
a:' should be the value obtained by a continu-

ous increase in this function as x' increases without limit. The sim-

plest value for tan- 1 is 0. If tan- x' increases continuously from 0,

it reaches the limit — when x' becomes infinite. Hence
2

.

lim (tan-V-tan^O) = £•
x' = co v

2

If we choose tan_1 = n7r, 7i any integer, then , . tan -1
a;' = nT+ —

»

J x' = x 2

and the difference gives *
, as before.

Ex. 4. Find the area bounded by the curve y(x2 + a 2
)
2 = x and

the positive x-axis.

Ex. 5. Find the area bounded by the curve y — tan-1
x, the coordi-

nate axes, and the line x — 1.

In this problem we have to deal with a many-valued function of x.

In fact, to each value of x corresponds an infinite number of values of
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tan -1
a:. The problem, accordingly, has an indefiniteness, which must

be removed by making some additional assumption.

The curve y = tan-1 x consists of an infinite number of branches,

corresponding ordinates of which differ by integer multiples of tt.

Each branch is continuous for all finite

values of x (see Fig. 70). It is evidently

necessary to select one of these branches

for the boundary of the proposed area,

and discard all the others. Suppose, for

example, the branch AB is selected. The

ordinate to this branch has the value

it when x is zero, and increases con-

_ 5 _
tinuously to it -\— = -— as x increases

4 4

continuously to 1. Hence the required

area is

Y

y^"

A
~B

C
X—

^

X -1

Fig. 70

| tan -1 x dx = \ x tan-1 x— \ log (a;
2

-f 1)

5* -1 log 2.

4 2
s

EXERCISES

1. Find the area bounded by the curve y
2 (x — 1)= 1, the asymp-

tote x = 1, and the line x = 2.

2. Find the area bounded by the curve y
3(x — l) 4 = 1 and its

asymptota, the x-axis.

3. Find the area bounded by the curve of Ex. 2, the x-axis, and

the ordinate x = 2.

4. Find the area inclosed by the curve x2
y
2 = a 2

(y
2 — x'

2
) and its

asymptote.

5. Find the area bounded by the curve a 2x — y(x — a), the rr-axis,

and the asymptote x= a.
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x3
6. Find the area between the cissoid y

1

2a
and its asymp-

tote x = 2 a.

7. Find the area between the curve y
2(l — x2

) = 1 and its

asymptotes.

144. Calculation of area when x and y are expressible in terms

of a third variable. When the rectangular coordinates of any

point of the boundary arc of the required area are given as

functions of a third variable 6, we may substitute in I ydx

the expressions for y and dx in terms of 6 and integrate be-

tween the corresponding new limits for in accordance with

Art. 140(d).

Area of the cycloid. This curve is traced by a point P in

the circumference of a circle of radius r as the circle rolls on

a straight line, without sliding.

Y

O M
Fig. 71

Let the point Pbe in contact with the given line at when

the circle begins to roll. Suppose that an arbitrary arc PQ
has rolled over the segment OQ. Let (x, y) denote the rec-

tangular coordinates of P, and let 6 represent, in radian meas-

ure, the angle at the center C subtending PQ ; then,

OQ = arc PQ = rO.

EL. CALC. — 19
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Dropping a perpendicular PR on the line CQ, we have

PR = r sin 6, RC = r cos 0.

Accordingly,

x=OM=OQ-MQ = rO-r sin 6 = r (0 - sin 0),

y = MP= QC- RC= r - r cos = r(l - cos 0).

These are called the two parametric equations of the cycloid,

being a varying parameter. One complete arch of the cy-

cloid is generated as 6 varies from to 2 7r, that is, as x varies

from to 2 ttt. The maximum ordinate for this arc occurs at

x — -n-r, and the arc is symmetrical with respect to this ordinate.

The area inclosed by the arc OPA and the cc-axis is

ydx= \ r(l - cos 0) • r(l - cos 0)d6 = 3 ttt3.

The area is three times that of the rolling circle.

EXERCISES

1. Find the area of the ellipse when x and y are expressed in

terms of the eccentric angle, x = a cos <£, y = b sin
<f>.

What is the meaning of the negative sign in the result?

2. 2 2

2. Find the area of the hypocycloid x 3 + y* = a 3 by expressing x

and y in the form x = a cos3
0, y = a sin3 6.

3. Find the area of the loop of the folium of Descartes

xs + y
s— 3 xy = 0.

This area may be calculated either by expressing x and y in the

6*+ 1 3 + 1

obtained by putting y = Ox and solving for a: and ?/, or by transform-

ing to polar coordinates and using the polar formula for area, Art. 145.
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4. Find the area within the curve y
2 = (1 — a;

2
)
8 by assuming

x = cos 0, y = sin3 0.

5. Find the area of (aa:)*+ (by)* = (a 2 - b2)*, the evolute of the

ellipse. (See Fig. 51, p. 190.) Express x and y in the form,

ax = (a2 - b2) sin 8
0, by = (a2 - b 2

) cos
3
0.

145. Areas in polar coordinates. Let PQ be an arc of a curve

whose equation is given in polar coordinates (p, 0). It is re-

quired to find the area bounded

by this curve and the two as-

signed radii QP and OQ.

Let A and B be any two

points of the curve with coordi-

nates (p, 0) and (p + Ap, + A<9)

respectively. Through ^4 draw

an arc AC of a circle with radius

p and center 0. The element of

area OAC is a sector of a circle

of angle A0. The arc AC is,
FlG> 72

therefore, p A0 and the sectorial area is | p
2 A0. The limit of

the sum of all such elements contained between OP and OQ is

!fV« (14)

That this is the actual area sought remains to be proved by

showing that the sum of the elements of area has the required

area for its limit. This may be done by steps exactly analo-

gous to those used in Art. 137, which would consist in

proving that the sum of all interior sectors, such as OAC, has

the same limit as the sum of all exterior sectors, such as ODB.

The details are left to the student as an exercise.
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EXERCISES

1. Find the area of the three loops of the curve p = a sin 3 0.

From the symmetry of the figure it is seen that one sixth of the

total area is described as varies from to — . Hence the area is

6 j*
Q

6

± a2 sin2 S$ d$= % a2

J
* (1 - cos 6 0)dO

r_a?

This is one fourth the area of the circumscribing circle.

2. Find the area of the lemniscate p
2 = a 2 cos 2 0.

3. Find the area of the circle p = 2 r cos 0.

4. Find the area of the cardioid p = r(l — cos $).

5. Find the area of the circle p = 10 sin 0.

6. Find the area bounded by the hyperbolic spiral p$ = c . and

radii drawn to two arbitrary points (pv #,) and (p2 , 2). Show that

the area is proportional to the difference between the radii.

7. Find the area of the four loops of the curve p = a sin 2 0.

8. Find the area of the loop in the spiral of Archimedes p = aO

generated between the limits — - and + - for 6.

9. Find the area bounded by the lituus p
26 = k and two arbitrary

radii, making angles 0\ and 62 with the polar axis.

10. Find the area of one loop of the curve p
2 = a2 cos nO.

11. The radius vector of the logarithmic spiral p = e~e starts at

the angle = and rotates positively about the origin an infinite

number of times. Determine the area swept over by the radius

vector.

12. Find the area of the curve p
4 = sin2 cos 0.

13. Find the area within the curve p = cos2 0.

14. Find the area of the innermost loop of the double spiral p = 2
.

146. Approximate integration. The trapezoidal rule. As

shown in Art. 138, the numerical value of the definite integral



INTEGRATION AS A SUMMATION. AREAS 293

f y dx is the same as that of the area bounded by the curve

y z=f(x), the z-axis, and the two ordinates x = a, x = b.

When a, b, and the coefficients in f(x) are numerically given,

the approximate value of this area, and therefore of the defi-

nite integral, can be found by adding the n terms of the series

[/(«)+ f(a + Aa + ' * * + f(a + n — 1 • Ax)] Ax. The close-

ness of the approximation improves with increasing values of

n. A much more rapid method of approximation is now to be

considered.

Instead of forming rectangles,

as in Fig. 59, p. 268, draw the

chords PPX , PXP2, • •
., Pn_!.Q, thus

making trapezoidal elements of

area, APP
X
A X, AxPx

P2£2i etc.

Denote the ordinates at A, Aly A2,

5—p,

A A x Az

Fia. 73

A^B'

An _ ly Bby y , ylf y2,
>-

?/„_!, yn respectively. Also for brevity write Ax = h.

the areas of the several trapezoids are

APP
X
A X
= 1^ + yx)h,

AXPX
P2A 2 = l(yi + y2)h,

Then

A>-iPn-iQB = i(yn_1 + yn)h.

Hence, by adding, we obtain for the approximate value of

the definite integral the expression

*[*¥* +* +» + ••• + !,„-,].

This is known as the trapezoidal formula for the approximate

value of
J

ydx and this method of computing its numerical

value is called the trapezoidal rule.
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147. Simpson's rule. With three ordinates. Instead of draw-

ing the chords PP1} PXP2 pass a parabola, having its axis ver-

tical, through the three points P, Px, P2 and determine the

area of the double strip bounded by the two ordinates y , y2,

the #-axis, and the parabolic arc.

The equation of the parabola is of the form

y = k -+- Ix -f- mx2
.

For convenience take the origin at the foot of the middle

ordinate yx . Then the abscissas of the three ordinates may

be represented by — h, 0, + h, and the area under the para-

bolic arc is given by the formula

x\k + Ix + mx2)dx = | (6 k + 2 mh2
).

This result can be expressed in a simple form in terms of the

three ordinates 2/ , yl} y2 . For,

y =k — lh-\- mh2
,

Vi = k,

y2 = k + Ih + mh2
;

therefore, y •+- y2
= 2 k+ 2 ra/i

2

,

hence, 6 ft + 2 m/i2 = y + 4 ?/j + ?/2,

and, accordingly,

parabolic area APPXP2A2
— - (y -f- 4 yx -f ?/2). (IS)

o

This is Simpson's parabolic formula for three ordinates.

With n ordinates. In like manner the area bounded by the

two ordinates y2, y4 and a parabolic arc through P2 , P3, P4 is

| (2/2 + 4 2/3 + 2/*), (16)
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and so on. If the number of ordinates y , yu •••, yn is odd, we

obtain, by adding together the expressions (15), (16), etc.

J[2/o + * Z/i + 2 2/2 + 4 2/3 +2 1/4 + • + 2 2/n -2 + * Vn -l + 2/J-
o

This is Simpson's formula for the approximate value of I ydx.

148. The limit of error in approximate integration. The ap-

proximate value obtained for I f(x)dx by means of Simpson'ss

formula differs from the true value by an amount which does

not exceed*
_ {Q — a

)j
l \£)rr

j

180

in which fIV
(£) is the value of the fourth derivative of f(x)

when x is given a certain value £ between a and b. The limit

of error for the trapezoidal rule is *

(b-a)f"(£W
12

Since £ is not definitely known, in applying the above

formulas to find the limit of error it is necessary to choose £

so that / IV
(£) or /"(£) has its greatest value in the interval

from a to b. The result so obtained may be considerably

larger than would be given by the formula if £ were actually

known. In some cases the result will be so large as to give no

useful information in regard to the closeness of our approxi-

mation. In other cases it will be small enough to indicate

that the required degree of approximation has been attained.

For example, suppose it is required to evaluate

'login a
dx.

* See Markoff, "Differenzenrechrmnij," § 14, pp. 57, 59.
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Since f(x) = x~ l \ogl0 x, we obtain by successive differentiation

/^(a;)=a;-6(241og10 a;-50*iW"), M=log10 e== 0.4343, very nearly.

As we cannot readily determine by inspection the largest nu-

merical value of f lv (x) in the interval 20 <^ x <J 30, we obtain

the next derivative . , s
. /rt_. ,_„«-..

/v(a?) = ar6(274 Jf- 120 log10 x).

The first factor x~6
is positive. The second factor takes a nega-

tive value for x ^20 and hence

/

v (<r) is negative in the given

interval. Therefore, /IV (x) is a decreasing function for all the

values of x under consideration. But f lv (x) is positive for

x = 30, and accordingly its greatest numerical value occurs for

x = 20, which is / Iv(20) = 0.000003.

The limit of error for Simpson's formula is, therefore,

_ 10(0.000003)y = _ (a0OO0OO2)y .

If we use 3 ordinates, then h=5 and the error does not exceed

— 0.0001+ ; that is, the error is less than two units in the fourth

place of decimals.

EXERCISES

In the following problems use Simpson's formula whenever an odd

number of ordinates is given. Determine the limit of error and,

when possible by direct integration, the exact error. Also evaluate

by using the trapezoidal rule, and compare the degree of accuracy

attained by the two different methods.

1. Evaluate ( x2 dx by the trapezoidal rule, using 5 ordinates

;

9 ordinates.

In the case of 9 ordinates, n = 8 and h = —^— = -
, y = 0,

3/i = G) 2
>!/2 = l,y

3
= (§)V--, </8 = 42.

2. Prove that Simpson's rule gives the exact value of f x2 dx
y

(
h

xs dx, C\ ax* + /?.r
2 + yx + 8) dx.
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3. Evaluate ( cos xdx, using 3 ordinates ; 5 ordinates ; 7 ordi-

nates; 9 ordinates. Notice the variation of error with increasing

values of n.

4. Evaluate ( Vxdx, using 5 ordinates.

5. Evaluate ( Vl + Xs dx, using 4 ordinates ; 7 ordinates.

6. Evaluate f cos x dx, using 7 ordinates.
Jo

C 12

7. Evaluate \ log
10
x dx, using unit intervals.

r to ,/r
8. Evaluate \

'—
, using 7 ordinates.

Jio loo- r

9. Evaluate ( Vl — xi dx, using 6 ordinates.
Jo

°

10. Evaluate ( e~
xidx, using 11 ordinates.

This integral (with any upper limit) is called the Probability Inte-

gral since it plays an important role in the theory of probabilities.

IT

11. Evaluate f Vl — 3 sin'2 xdx, using ? ordinates.

r 10

12. Evaluate \ x2 dx by the trapezoidal rule, using 11 ordinates.

13. Calculate the value of 7rfrom the formula — = (
( x

, using
1 J» 1 + x'

2

11 ordinates.

Determine the error by comparison with the known value of 7r.

r l
14. Evaluate i Vcos6d$, taking at intervals 15°, 10°, 0°.

This, like Ex. 11, is an Elliptic Integral and cannot be integrated

by any formula given in the present volume. It occurs in the prob-

lem of calculating friction in journals. (See " Engineering Mathe-

matics " by Prof. V. Kakapetoff, Part I, p. 16. Wiley, 1912.)

15. Evaluate ( °%w x
dx, using 3 ordinates.

J20 x
&



CHAPTER VII

GEOMETRICAL APPLICATIONS

149. Volumes by single integration. The volumes of various

solids may easily be calculated by a summation process exactly

similar to that used in computing areas. The following prob-

lems will make the mode of procedure clear.

Ex. 1. A woodman fells a tree 2 ft. in diameter, cutting halfway

through on each side. The lower face of each cut is horizontal and

the upper face makes an angle of

60° with the lower. How much

wood does he cut out?

The portion cut out on one side

forms a solid bounded by a cylindri-

cal surface whose equation may

be taken in the form x2 + 1,

and by two planes whose intersec-

tion may be chosen for the y-axis.

Imagine this wedge-shaped solid

divided into thin plates by means

of planes parallel to the a;2-plane

and at equal distances Ay. The

volume of an arbitrary plate PQRP'Q'R' is approximately equal to

the area of the triangular face multiplied by the thickness Ay.

Area PQR = \ RP PQ= \xz =^xi
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since - = tan 60° = V3. The element of volume is therefore
x

V3 x2
A

Since the figure is symmetrical with respect to the arz-plane, it is suffi-

cient to calculate the volume between the limits and 1 for y and

double the result.

The limit of th3 sum of all elements of volume in the first octant

is

^j/^ = ^j-; (i- y
s)dy= -L.

That this limit is the volume to be determined may be seen on

observing that the element of volume falls short of the total amount

contained in the plate PQRP'Q'R' by the prismatic piece PNP'QMQ'.

The sum of all these neglected portions, in the first octant, is less

than the volume of the maximum plate (having the a;z-plane for base),

and hence approaches zero as Ay diminishes.

Therefore the total volume of wood cut out is cu. ft.

V3

Ex. 2. Calculate the volume in Ex. 1, by dividing the solid of

Fig. 74 with equidistant planes parallel to the yz-plane.

Ex. 3. Find the volume of the ellipsoid

Imagine the solid divided into a number of thin plates by means

of planes perpendicular to the x-axis and at equal distances Ax. Re-

gard the volume of each plate as approximately that of an elliptic

cylinder of altitude Ax, whose base is the section of the ellipsoid by

one of the cutting planes. If the equation of this plane is x = A,

the equation of the elliptic base of the plate is (in y, z coordinates)
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** z* _ A2

+ -=1-
r^
2 c2 a2

X2

Dividing by 1 — — , we obtain
a2

The semiaxes of the ellipse are

= 1.

Since the area of the ellipse is the product of the semiaxes multi-

plied by 7r (Ex. 13, p. 281), it follows that the area of the elliptic base

is irbcy 1
-J.

On replacing A. by x, the element of volume may

be written

The sum of all such elements for values of x varying by equal

increments Ax between and a differs from the volume of the half

ellipsoid by a series of ring-shaped portions, the total sum of which

is less than the volume of the maximum plate of the figure. It

readily follows from this that the total volume of the ellipsoid is

C a
I x2

\ 4
2 \ irbc 1

) dx = - rrabc.
Jo V a2

/ 3

Ex. 4. Solve Ex. 3 by taking the cutting planes parallel to the xz-

plane and at equal distances At/.

Ex. 5. Solve Ex. 3 by taking the cutting planes parallel to the

x^-plane.

Ex. 6. Find the volume of the portion of the elliptic paraboloid

v2 z2'— H— = x cut off by the plane x — 1.

a2 b2
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Ex. 7: Find the volume of the elliptic cone ^ -\— = (x — l) 2 raeas-
, a 2 b-

ured from the ^2-plane as base to the vertex (1, 0, 0).

Ex. 8. Find the volume of a pyramid of altitude h and of base

area A.

[Hint. Take the base on the ar^-plane, the altitude coinciding

with the 2-axis. Cut the solid into thin plates by planes parallel to

the base.]

e=i.
b2

On the major axis a plane

D

Fig. 75

Ex. 9. Given an ellipse —
a 2

rectangle ABCD is con-

structed perpendicular to

the plane of the ellipse.

Through any point P of

the line CD a plane is

constructed perpendicu-

lar to CD. The two

points ii and 5 in which

the latter plane meets the

ellipse are joined to P
by straight lines. The

totality of all lines so determined forms a ruled surface called a conoid.

Given A C — p, find the volume of the above conoid.

Ex. 10. A rectangle moves from a fixed point P parallel to itself,

one side varying as the distance from P, and the other as the square

of this distance. At the distance of 2 ft., the rectangle becomes a

square of 3 ft. on each side. What is the volume generated?

Ex. 11. The center of a square moves along a diameter of a given

circle of radius a, the plane of the square being perpendicular to that

of the circle, and its magnitude varying in such a way that two oppo-

site vertices move on the circumference of the circle. Find the vol-

ume of the solid generated.
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Ex. 12. A right circular cone having an angle 2 at the vertex has

its vertex on the surface of a sphere of radius a and its axis passing

through the center of the sphere. Find the volume of the portion of

the sphere which is exterior to the cone.

Ex. 13. Find the volume of the paraboloid — + ^— = z cut off by the

plane z = c.

Ex. 14. A banister cap is bounded by two equal cylinders of revo-

lution of radius r whose axes intersect at right angles in the plane of

the base of the cap. Find the volume of the cap.

150. Volume of solid of revolution. Let the plane area,

bounded by an arc PQ of a given curve (referred to rectangular

axes) and the ordinates

pn-\ ^-^L at the extremities P and

Q, be revolved about the

x-axis. It is required to

find the volume of the

solid so generated.

Let the figure APQB
be divided into n strips

of width Ax by means

of the ordinates A
l
PtJ

A2P2,.-, A-iPn-v In

revolving about the

x-axis, the rectangle APRXAX generates a cylinder of altitude

Ax, the area of whose base is tt • AP . Hence
2

volume of cylinder = -k • AP • Ax.

The volume of this cylinder is less than that generated by

the strip APP
X
AX

by the amount contained in the ring gen-

erated by the triangular piece PR X
PV Imagine this ring

Fig. 76
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pushed in the direction of the x-axis until it occupies the posi-

tion of the ring generated by CDE. If every other neglected

portion (such as is generated by P^P^) is treated in like

manner, it is evident that the sum is less than the volume

generated by the strip A^P^QB, and hence has zero for

limit as Ax approaches zero. Therefore the sum of the n cylin-

ders generated by the interior rectangles of the plane, viz.

tt(.IF + A^2 + -+An_1PnJ)Ax,

has for limit the volume required. But the limit of this sum

is the definite integral I wy2dx, and hence

volume = 7r I y
2 dx.

The volume generated by revolution about the y-axis is found

by a like process to be expressed by the definite integral

rj x?dy,

in which a' and b' are the values of y at the extremities of the

given arc.

When the axis of revolution does not coincide with either of

the coordinate axes, a similar procedure will usually give at

once the element of volume, y Qy

Examples 1-3 will illustrate.

Ex. Find the volume of revo-

lution of the segment of the

parabola y
2 = x cut off by the

line y = x, the axis of revolu-

tion being the given line.

Let OQ be the axis, and P
any point of the parabolic arc. °\ Fig. 77
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If v denotes the perpendicular distance PR from P to OQ and u the

length of the line OR, then the element of volume is

7T?>
2 Am.

The formula of analytic geometry for the distance from a point

to a line gives

_ y — x _ Vx — x
V ~~

V2~~ V2
'

in which (x, y) are the coordinates of P. The second form for v is

obtained by substituting for y the expression given by the equation

of the parabola.

Since Am is measured on a line making an angle of 45° with the

.r-axis, it follows that Am = V'2 Ax.

Hence the required volume is

1 [Vx- xV
i 7T V2 dx

V V2 / 30V2

EXERCISES

1. A quadrant of a circle revolves about its chord. Find the

volume of the spindle so generated.

[Hint. Take the equation of the circle in the form x2 + y
2 = r2

and the equation of the chord x + y = r.]

2. Find the volume of revolution of the segment of the circle

x2 + y
2 — r2 cut off by the line x = a, this line being the axis of

revolution.

3. Find the volume of the truncated cone obtained by revolving

about the ?/-axis the segment of the line 3 # + # = 5 between the

points (2, - 1) and (1, 2).

4. Find the volume generated by the revolution of the cissoid

x3

= about the x-axis from the origin to the point (xv y^).
2a — x

What is the limit of this volume as xi approaches 2 a?
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5. Find the volume obtained by revolving the entire cissoid about

its asymptote, the line x = 2 a.

[Hint. The element of volume is tt(2 a — x)'2 Ay. For the pur-

pose of integration express x and y in terms of a third variable t by

means of the equations

z = 2asin2
*, 2/ =2a— 1
'

*
cost J

6. Find the volume of the oblate spheroid obtained by revolving

2 b*
the ellipse — -f 2_ = 1 about its minor axis.

7. Find the volume of the sphere obtained by revolving the

circle x'
2 + (y — k) 2 — r2 about the y-axis.

8. The arc of the hyperbola xy = k2
, extending from the vertex

to infinity is revolved about its asymptote. Find the volume

generated.

What is the volume generated by revolving the same arc about the

other asymptote?

9. Find the entire volume obtained by rotating the hypocycloid

xi 4- y* = a* about either axis.

10. Find the volume obtained by the revolution of that part of

the parabola Vx -f Vy = Va intercepted by the coordinate axes about

one of those axes.

11. Find the volume generated by the revolution of the witch

8 a*

'2+4«2
about the a:-axis.

12. Find the volume generated by the revolution of the witch

about the #-axis, taking the portion of the curve from the vertex

(x = 0) to the point (xi, y\).

What is the limit of this volume as the point (xv y {
) moves toward

infinity?

EL. CALC. 20
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13. Find the volume obtained by revolving a complete arch of

the cycloid x = a(0 — sin 6), y = a(l — cos 6) about the a>axis.

Volume = Tri ifdx = ira 3
l (1 - cos 0)

3 dO.

14. Find the volume obtained by revolving the cardioid

p = a(l — cos 6) about the polar axis.

Assume x = p cos 0, y = p sin B.

Then dx = d(p cos 6) = d[a{\ — cos 0)cos &]

= a sin 0( - 1 + 2 cos 6) dO.

Hence

volume = it fifdx = - 7m 3 f "sin3 0(1 - cos 0)
2
(1 - 2 cos 0) dd.

151. Lengths of curves. Rectangular coordinates. Let it be

required to determine the length of a continuous arc PQ of a

curve whose equation is written in rectangular coordinates

It is first necessary to define what is meant by the length

of a curve. For this pur-

pose, suppose a series of

points Pj, P2,
'•', P„_i taken

on the arc PQ (Fig. 78), and

imagine the lengths of the

chords PPX , PX
P2, ---to have

been determined. The limit

of the sum of these chords as

the length of each chord ap-

proaches zero will be taken,

in accordance with accepted

usage, as the definition of the length of the arc PQ ;
* that is,

arc PQ = Lt (chord PP, + chord P,P2 + •• • + chord Pn_ x Q). (1)

* That this limit is always the same no matter how the points Pi are chosen,

as long as the curve lias a continuously turning tangent, and the distances

Fig. 78
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This definition is immediately convertible into a formula

suitable for direct application.

For, let the points Px , P.,, • •• be so chosen that

PB1 = P1R2 = .. = Ax,

the lines PBi, etc., being drawn parallel to the ic-axis.

Denote by Ay the increment RxPx of y. Then the length

of the chord PP
X
is

V(A*)» + (Ayy = yjl+ ('^Y A* = X/l + (|^)V (2)
\AxJ * \&yj

Now —^ is the slope of PPV It is, therefore, equal to the
l\X

slope of that tangent to the arc PPX which is parallel to the

chord. If (x1} i/i) denote the coordinates of the point of con-

tact of this tangent line, then we have

Ay _ dy
l

Ax dxx

Hence the length of chord PPX may be expressed in the form

/(x^Ax, in which

'w-V1*®
1

- (3>

Similarly

P,P2 =f(x2) Ax, P2PS =f(x3) Ax, • • •

,

in which x2 is the abscissa of a certain point on the arc P
X
P2 ,

and so for xs ,
•••. When these expressions are substituted in

(1), it becomes

arC PQ = Ax™ ^"W +/&) + • '

'
+/(*-)] **•

Pi-lPi are all made to tend towards zero, admits of rigorous proof. The
proof is, however, unsuitable for an elementary textbook. (See Rouche et

Comberousse, " Traite de geome'trie," Part I, p. 189, Paris, 1891).
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But, by (11), p. 274, this limit is
J

f(x)dx. -Substituting for

f(x) from (3), we obtain the formula

-"e-rv+ffi)'** wday

in which a and b are the abscissas of P and (^respectively.

Taking for PPX the second form in (2), namely,

vwiw
we deduce in like manner

-^-xv+sy*\d>j;

in which a' and b
f

are the ordinates of P and Q.

EXERCISES

1. Find the length of arc of the parabola y
2 = 4 px measured from

the vertex to one extremity of the latus rectum.

In this case ^=-W",
dx y x

hence length of arc = f
P
\il + £ dx = (" x+p

dx.
J0 " x > Vx*+px

2. Find the length of arc of the semicubical parabola ay 2 — xz

from the origin to the point whose abscissa is -•

3. Find the length of arc of the curve y = log cos x, measured

from the origin to the point whose abscissa is — •

2 2 2

4. Find the entire length of the hypocycloid x* + y^ = a 5
.
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6. Find the length of arc of the catenary y = - (ea + e a
) from

the point (0, a) to the point whose abscissa is a.

6 ' 2x
x3 1

7. Find the length of arc of the curve y = — + —- between the

limits x = 1 and x = 2.

8. Find the length of the logarithmic curve y = log x from a: = 1

to x = V3.

9. Find the length of arc of the evolute of the ellipse

(ax)s + (byfs = (a*-b2)l

10. Find the length of arc of the curve y = a log (a2 — x2
) from

x = to x = -

.

152. Lengths of curves. Polar coordinates. The polar

formulas for length of arc may be derived from those of the

previous article by transformation from rectangular to polar

coordinates.

Since x = p cos 0, y = p sin 6, we obtain by differentiating

with respect to 6

dx = (dp cos 0-p sin dXie, dy =
(
d
? sin 6 + p cos $) cl0,

hence

V i+©
,

*-va^v-v@y+7*

Therefore the length of arc is

arcPe =£^ +(|y<W, (5)

the limits of integration being the values of 6 at P and Q.
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If p instead of is taken as the independent variable, we

deduce in like manner

arcPQ=jf;Vl +(^)V
the limits being the values of p at P and Q.

EXERCISES

1. Find the length of arc of the logarithmic spiral p = ea between

the two points (pv 0j) and (p2 , 2), and show that it is proportional

to the difference of the two radii p\ and p2 .

2. Find the length of arc of the circle p = 2 a sin 0.

3. Find the entire length of the cardioid p = a(\ — cos 6).

Q
4. Find the length of the parabola p = a sec2 - between the points

(Pv #]) and (p2, (92).

5. Find the length of the spiral of Archimedes p = aO between

two arbitrary points.

6. Find the length of arc of the spiral p = 0'2 measured from

= to 6 = 7t.

7. Find the entire length of the curve p = cos'2 0.

A
8. Find the entire length of the curve p = a sin 3

r -

o

3. Find the length of arc of the cissoid p = 2 a tan sin 6 between

the limits and — •

4

[Hint. For the purpose of integration, express the integrand in

terms of sec as the independent variable.]

153. Measurement of arcs by the aid of parametric representa-

tion. Suppose the rectangular coordinates of a point on a

given curve are expressed in terms of a third variable t. Then,
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since in rectangular coordinates — =-%/( — J +( — )
(Art. 41),

we have

in which s = arc PQ, and tlt t2 are the values of t corresponding

to the points P and Q. In like manner, if the polar coordi-

dates (p, 0) are expressed in terms of t, the formula for length

of arc is

-JWaW'Sr'dt

since iwijH'f)'

EXERCISES

1. Find the length of a complete arch of the cycloid

x = a(t — sin t), y = a(l — cos /).

2. Find the length of the epicycloid

x = a(m cos t — cos mt), y = a(m sin t — sin m/)

from t = 0tot= '

m — 1

3. Find the length of arc of the hypocycloid x* -\- y^ = a? by ex-

pressing x and y in the form x — a sin3 t, y — a cos3
t.

4. Find the length of the involute of the circle

x = a(cos t + t sin <), y = a(sin t - t cos f)

from < = to t = tv

5. Find the length of arc of the curve x* — yt = a% from (a, 0)

to (xv yj by assuming x = a sec3
t, y = a tan3

/.
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6. Find the length of arc of the curve x = e* sin t, y = el cos t from

t = to t = t\.

7. Find the length of arc of the curve x = a + t
2

, y = b 4 t
3

, meas-

ured from the point t = to the point t = tv

154. Area of surface of revolution. Let AQ be a continuous

arc of a curve whose equation is expressed in rectangular coordi-

nates x and y. It is required to

determine a formula for the area

of the surface generated by revolv-

ing the arc AQ about the a>axis.

It has been shown in Art. 44,

if p. 81, that if S denotes the area

of the surface generated by the

FlG - 79 rotation of AP (P being a variable

point with coordinates (x, y)), then A# satisfies the conditions

of inequality

2 7t y As < AS < 2 7r(y + Ay) As. (6)

Let the arc AQ be divided into n equal parts of length A.s.

For each segment of arc there will be a set of conditions such

as (6), the values of y, Ay, AS being in general different for

the different segments. Let the n sets of inequalities thus

obtained be added. In what follows, the symbol ^, will be

used as an abbreviation of the expression, "The sum of the

n terms of the form." Since 2j A>S = S (in which S now

denotes the entire surface generated by arc AQ), we have

2 7r^yAs<S<2Tr^(y + Ay)As. (7)

Now let As (and hence Ay) approach zero. The first mem-

ber of (7) becomes 2-k
|
yds, which changes to
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on making x, or y, the independent variable. The limit of the

last member of (7) may be written

lim
As.™o X ty As + Ay As

~i
=
fy ds + limS A^ As-

The last term is zero. For, let 8 represent the maximum

value of Ay in any of the terms of 2 Ay As. Then follows

]T Ay As ^ 8 ]P As = 8 • arc AQ,

and since 8 approaches zero, we conclude that lim Va^As = 0.

Hence lim ^?y As = lim ^P (y -f Ay) As,

and therefore

In like manner the area of the surface obtained by revolving

arc AQ about the y-axis is

EXERCISES

1. Find the surface of the catenoid obtained by revolving the

X _x

catenary y = ~ (e a +e a
) about the y-axis, from x — to x = a.

, XX
Since -^- — \{e a -e a

),
ax

it follows that

1 + (dyy_(e*+e~°)\+
\dx) ' 4
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hence, by using the first formula of (8), the required surface has the

area

[e
a + e a )dx.r

jo *(<

2. Find the surface obtained by revolving about the y-axis the

quarter of the circle x2
-\ y

2 + 2x + 2y + l = contained between

the points where it touches the coordinate axes.

3. Find the surface generated by revolving the parabola y
2 = 4px

about the £-axis from the origin to the point (p, 2 p).

4. Find the surface generated by the revolution about the ?/-axis of

the same arc as in Ex. 3.

5. Find the surface generated by the revolution of the ellipse

a 2
+

b2 ~ '

(a) about its major axis (the prolate spheroid)
;

(b) about its minor axis (the oblate spheroid).

6. Find the surface generated by the revolution of the cardioid

p = a(l + cos 0) about the polar axis.

Regarding the figure as referred in the first place to rectangular

axes such that x — p cos 0, y = p sin we have

surface = 2 tt
jj
y ds = 2 tt f

""

p sin B^p2 +(^Y d0>

ds =^p2 + (&YdO by Art. 45.

7. Find the surface of the cone obtained by revolving that por-

tion of the line - + £ = 1 which is intercepted by the coordinate axes,
a b

(«) about the x-axis

;

((S) about the y-axis.

8. Find the surface of the sphere obtained by revolving the circle

p = 2 a cos about the polar axis. [Cf. Ex. 6.]
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9. Find the surface generated by the revolution of a complete

arch of the cycloid x — a(0 — sin 0), y = a(\ — cos 0) about the z-axis.

10. Find the surface of the ring generated by revolving the

circle x2 + (y — k) 2 = a2, k>a, about the x-axis. Also find the vol-

ume of this ring.

11. Find the surface generated by the rotation of the involute

of the circle

x = a (cos t + t sin /), y = a (sin t — t cos t)

about the x-axis from t — to t = tv

155. Various geometrical problems leading to integration.

Ex. 1. A string AB of length a has a weight attached at B. The

other extremity A moves along a straight line OX, drawing the weight

in a rough horizontal plane XOY. The path traced by the point B
is called the tractrix. What is its equation ?

Let OF be the initial position of the string and AB any intermedi-

ate position. Since at every instant the force is exerted on the weight
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B in the direction of the string BA, the motion of the point must be

in the same direction ; that is, the direction of the tractrix at B is

the same as that of the line BA and hence BA is tangent to the curve.

The expression for the tangent length is (Art. 48, p. 86)

dy

dx
=wir + l = a.

dx
Solving for •— , we obtain

dy

dx
V

a-

Integrating with respect to y gives

Vo2
-J-

y
dy = Va* - f - a log « + Va2 - y* + c

y

The constant of integration is determined by the assumption that

(0, a) is the starting point of the curve. Substituting these coordi-

nates in the above equation, we find C = 0.

Ex. 2. The equiangular spi-

ral is a curve so constructed

that the angle between the ra-

dius vector to any point and

the tangent at the same point

is constant. Find its equation.

Ex. 3. Determine the curve

having the property that the

line drawn from the foot of

any ordinate of the curve per-

pendicular to the correspond-

ing tangent is of constant

length a.

If the angle which theFig. 81
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tangent makes with the a>axis is denoted by
<f>,

it is at once evident

(Fig. 81) that

a . 1 1
- = cos </>

VI + tan**
A/l+(^)

!

From this follows

x -
i g ( ?y + Vf - a2

) + C.

When the tangent is parallel to the x-axis, the ordinate itself is the

perpendicular a. If this ordinate is chosen for the y-axis, the point

(0, a) is a point of the curve, and hence

C = - log a.

The equation can accordingly be written

v + ^v ~ a
'2

= c«. (i)

a

From this follows, by taking the reciprocal of both members,

y + Vyt- a 2

whence, on rationalizing the denominator,

y - Vy2 _ qa _^
a

o
Adding (1) and (2) and dividing by -, we obtain

(2)

y = |(c« + « «),

which is the equation of the catenary.

Ex. 4. Find the equation of the curve for which the polar subnor-

mal is proportional to (is a times) the sine of the vectorial angle.
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Ex. 5. Find the equation, in rectangular coordinates, of the curve

having the property that the subnormal for any point of the curve

is proportional to the abscissa.

Ex. 6. Find the equation in polar coordinates of the curve for

which the angle between the radius vector and the tangent is n times

the vectorial angle. What is the curve when n = 1 ? When n = | ?

Ex. 7. Find the rectangular equation of the curve for which the

slope of the tangent varies as the ordinate of the point of contact.

Ex. 8. Find the equation of the curve for which the polar sub-

tangent is proportional to the length of the radius vector.

Ex. 9. Find the volume generated by the revolution of the trac-

trix (see Ex. 1) about the positive x-axis.

Ex. 10. Find the area of the surface of the revolution described

in Ex. 9.

Ex. 11. Find the length of the tractrix from the cusp (the point

(0, a)) to the point (an, yi).

Ex. 12. Derive the following formulas for the length of arc s of a

twisted curve, in space of three dimensions, limited by the points

(#i, yi, zi), (#2, yi-, Z2), the coordinates being rectangular:

-i:v1+(gr+ (i)
a-£v1+ (i)v(i)>

Ex. 13. Using the formula of Ex. 12, find the length of the helix

x = a cos t, y = a sin t, z = bt,

in which a and b are constants, and t is a variable parameter.

Ex. 14. A plate of steel is \ inch thick and has the form of a right

segment of a parabola. It weighs 490 lb. per cubic foot. Find the

total weight of a plate 30 in. broad and 16 in. long.

Take the equation of the parabola in the form y
2 = ±px. Since

y= 15 when x — 16, we may find the value of p by substituting these
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coordinates in the assumed equation, namely, 4/>

the parabolic plate is therefore

*tf. The area of

/*16 1

2 \ l£ x^ dx sq. in.

The volume and hence the weight are now

readily obtainable.

Ex. 15. A plate of wrought iron of heavi-

ness 480 lb. per cubic foot is \ in. thick and

is bounded by three straight edges at right

angles to each other, as shown in the figure,

while the curved boundary is a hyperbola Fig. 82

with the equation (x + 5) y = 40, the base of the figure being on the

ar-axis. Calculate the weight.

Ex. 16. A metal plate, in the form of an

equilateral triangle, is \ in. thick and has an

altitude of 4 in. Any very narrow vertical

strip, as AB, of length 2y and width Ax, is

of nearly uniform density- The density varies

from one strip to another in such a way that Fig. 83

the weight y per cubic inch is determined by the condition

= 0.26 1 + 100 \

9 + xV'

Find the weight of the plate.

[Hint. Calculate the weight of the strip AB, then take the limit

of the sum of all such strips con- T
tained in the figure.] r

—

Ex. 17. A trapezoidal plate ABCD
is | in. thick. The weight y per cubic

inch is constant along any vertical

line, but varies with x according to

the law

y = 0.05 x 1 oz. per cubic inch.
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The first strip DA is 4 in. from the origin. What altitude h must

be adopted for the trapezoid in order that the total weight of the

plate may be just three ounces?

Ex. 18. The frustum of a paraboloid of revolution has vertical par-

allel bases five inches apart. The equation of the meridian curve, with

the inch as the linear unit, is y = Vx. The heaviness y is constant

over a vertical plane section, but varies with x according to the law

y = 0.06 VlOO — x2 lb. per cubic inch. Find the total weight from

x = 4 to x = 9.



CHAPTER VIII

SUCCESSIVE INTEGRATION

156. Functions of a single variable. Thus far we have con-

sidered the problem of finding the function y of x when -&
dx

only is given. It is now proposed to find y when its nth.

d"v
derivative —& is given.

dxn

The mode of procedure is evident. First find the function

—'" which has —- for its derivative. Then, by integrating
dxn~l dxn

dn~2v
the result, determine -„, and so on until after n successive

dxn~2

integrations the required result is found. As an arbitrary

constant should be added after each integration in order to

obtain the most general solution, the function y will contain

n arbitrary constants.

Ex.1. Given ^ = I,findy.
dx3 x3

Integration of — with respect to x gives

dx1 2 & T l
'

A second integration gives,

dx 2 x

and finally y = \ log x + \ Cix2 + C2x + C8
.

EL. CALC— 21 321
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The triple integration required in this example will be symbolized by

which will be called the triple integral of — with respect to x.
xs

Ex. 2. Determine the curves having the property that the radius

of curvature at any point P is proportional to the cube of the secant

of the angle which the tangent at P makes with a fixed line.

If a system of rectangular axes is chosen with the given line for

x-axis, it follows from equation (6), p. 173, and from Art. 42, that

\dxl J i r
1
,(dyyii

~y =«L + UJ J
'

dx2

in which a is an arbitrary constant. This equation reduces to

£* = «,
dx*

from which follows

y = jjf[a(dxy = «[f + Cix + e
2],

Ci and Cz being constants of integration. Hence the required curves

are the parabolas having axes parallel to the ?/-axis.

The existence of the two arbitrary constants Ci, C2 in the preceding-

equation makes it possible to impose further conditions. Suppose,

for example, it be required to determine the curve having the prop-

erty already specified, and having besides a maximum (or a minimum)

point at (1, 0).

Since at such a point
(
-2L = 0, it follows that
dx

= «(1+ Ci),

whence C\ = — 1.
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Also, by substituting (1, 0) in the equation of the curve,

= a{\ - 1 + CV),

Accordingly the required curve is

y=l(x-iy.

Ex. 3. Find the equation (in rectangular coordinates) of the

curves having the property that the radius of curvature is equal to

the cube of the tangent length.

[Hint. Take y as the independent variable.]

Ex. 4. A particle moves along a path in a plane such that the

slope of the line tangent at the moving point changes at a rate pro-

portional to the reciprocal of the abscissa of that point. Find the

equation of the curve.

Ex. 5. A particle starting at rest from a point P moves under the

action of a force such that the acceleratiop (cf. Ex. 14, p. 77) at each

instant of time is proportional to (is k times) the square root of the

time. How far will the particle move in the time /?

Ex. 6. In connection with a certain curve referred to rectangular

axes, we know in advance that it passes through a point A on the

y-axis at a distance 1.12 in. above the origin. It also passes through

a point B of the first quadrant which is at a distance of 12 in. from

the y-axis, and the slope of the tangent to the curve at this point is

0.09. At each point P of the curve the second derivative of y satis-

fies the relation

—
{ = 0.0012 x.

It is required to find the general expression (in terms of x) of the

ordinate and the slope of the tangent line for any point P of the

curve. In particular, find the ordinate and slope when x = 20 in.
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Ex. 7. For a certain curve ADN situated in the first quadrant we
have given

1000^ = 1.5 -0.276 x.
dx2

The point A has the coordinates (0, 0.04) and the abscissa of D is

10. At the point B of the curve, whose abscissa is 5, the slope of the

tangent line is 0.002.

A second curve DC is tangent to the first at the point D, and for

each point of it we know that

1000^ = 0.2 x -0.115.
dx2

Find the equations of both curves.

157. Integration of functions of several variables. When
functions of two or more variables are under consideration,

the process of differentiation can in general be performed

with respect to any one of the variables, while the others

are treated as constant during the differentiation. A repeti-

tion of this process gives rise to the notion of successive

partial differentiation with respect to one or several of the

variables involved in the given function. [Cf. Arts. 62, 67.]

The reverse process readily suggests itself, and presents

the problem : Given a partial (first, or higher) derivative of a

function of several variables with respect to one or more of these

variables, to find the original function.

This problem is solved by means of the ordinary processes

of integration, but the added constant of integration has a

new meaning. This can be made clear by an example.

Suppose u is an unknown function of x and y such that

dx
J
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Integrate this with respect to x alone, treating y at the

same time as though it were constant. This gives

u = x2
-f- 2 xy -f- <f>,

in which
<f>

is an added constant of integration. But since

y is regarded as constant during this integration, there is

nothing to prevent <£ from depending on it. This depend-

ence may be indicated by writing <f>(y) in the place of
<f>.

Hence the most general function having 2x + 2y for its

partial derivative with respect to x is

u = x2 + 2xy+<f>(y),

in which <f>(y) is an entirely arbitrary function of y.

Again, suppose
d2u 2 2= xz

y .

dxdy

Integrating first with respect to y, x being treated as though

it were constant during this integration, we find

where i{/(x) is an arbitrary function of x, and is to be regarded

as an added constant for the integration with respect to y.

Integrate the result with respect to x, treating y as constant-

Then
u = i «V + *0) + $>(?/).

Here ®(y), the constant of integration with respect to x,

is an arbitrary function of y, while

*(x) =
J

ij/(x)dx.

Since if/(x) is an arbitrary function of x, so also is <l'(x).
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158. Integration of a total differential. The total differential

of a function u depending on two variables has been defined

(Art. 63) by the formula

, du
7

. du -

du = — dx-\ ay.
dx dy

The question now presents itself: Given a differential ex-

pression of the form
Pdx+Qdy, (1)

wherein P and Q are functions of x and y, does there exist

a function u of the same variables having (1) for its total

differential f

It is easy to see that in general such a function does riot

exist. For, in order that (1) may be a total differential of a

function u, it is evidently necessary that P and Q have the

forms

P=* Q = p. (2)
dx ay

What relation, then, must exist between P and Q in order

that the conditions (2) may be satisfied? This is easily

found as follows. Differentiate the first equation of 2 with

respect to y, and the second with respect to x. This gives

dP= d2u dQ = d 2u

dy dy dx' dx dxdy

from which follows (Art. 68)

8P= 8Q
(3

By dx

This is the relation sought.

The next step is to find the function u by integration. It

is easier to make this process clear by an illustration.
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Given (2 x + 2y + 2)dx +(2y + 2 x + 2)dy,

find the function w having this as its total differential.

Since P=2x + 2y + 2, Q=2y + 2x + 2,

it is found by differentiation that

^=2 and 98-2,
dy ox

hence the necessary relation (3) is satisfied.

From (2) it follows that

p = 2x + 2y + 2.

ox

Integrating this with respect to x alone gives

u = x2 + 2xy + 2x + <£(?/). (4)

It now remains to determine the function <j> (y) so that

d

f[=Q]=2y +
2x + 2. (5)

Differentiating (4) with respect to y alone gives

1^ =2*+^),
dy

where <t>'(y) denotes the derivative of <f>(y) with respect to y.

The comparison of this result with (5) gives

2y +2x+2 = 2x + <l>\y) 1

or
<f>'(y)= 2y+ 2, (6)

whence, by integrating with respect to y,

4>(y)=y
2 + 2y + C,

in which O is an arbitrary constant with respect to both x

and y.

Hence u = x2 + 2 xy + 2 x + if + 2 y -f C.
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EXERCISES

Determine in each of the following cases the function u having the

given expression for its total differential

:

1. y dx + x dy.

2. sin x cos y dx + cos x sin y dy.

3. y dx — x dy.

4 ydx-xdy
xy

5. (3 x2 - 3 ay)dx + (3 y
2 - 3 ax) dy.

g y dx x dy

x'
1 + y'1 y'2 + x'

2

7. (2 x2 + 2xy + 5) dx + (x2 -\- y
2 - y) dy.

8. O4 + i/
4 + x2 - y

2
) dx + (1 y

sx - 2 xy + y - y
2 + 2) dy. <~

159. Multiple integrals. The integration of —— was con-
dx ay

sidered in Art. 157. If F(x, y) is written for the given func-

tion, the required integration will be represented by the symbol

= || F(x, y).dx dy,

and the function sought will be called the double integral of

F(x, y) with respect to x and y.

Likewise I F{x, y, z) dx dy dz

will be called the triple integral of F(x, y, z). It represents

d3u
the function u whose third partial derivative — is the

dx dy oz

given function F(x, y, z). It will be understood in what fol-

lows that the order of integration is from left to right, that is,
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we integrate first with respect to the left-hand variable x, then

with respect to y, and lastly with respect to z.

Such integrals (double, triple, etc.) will be referred to in

general as multiple integrals.

160. Definite multiple integrals. The idea of a multiple

integral may be further extended so as to include the notion

of a definite multiple integral in which limits of integration

may be assigned to each variable.

Thus the integral I I x2
y
s dy dx will mean that x2)/ is to

be integrated first with respect to y between the limits and 2.

This gives
2
x-y* dy =4 x2

.

j:

The result so obtained is to be integrated, with respect to x

between the limits a and b, which leads to

x
h

4:X2 dx = ±(b3 -a3

)

as the value of the given definite double integral.

In general the expression

x'j;
Fix, y)dydx

will be used as the symbol of a definite double integral. It

will be understood that the integral signs with their attached

limits are always to be read from right to left, so that in the

above integral the limits for y are b and b', while those for x

are a and a'.

Since x is treated as constant in the integration with re-

spect to y, the limits for y may be functions of x. Consider,
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for example, the integral
J J

xydydx. The first integra-

tion (with respect to y) gives

Jxy dy = x ,
x2 x\ Xs — X2

By integrating this result with respect to x between limits

and 1 the given integral is found to have the value — ^.

EXERCISES

Evaluate the following definite integrals :

1. f * (
2

xcos (xy)dydx. 5
- j/jo

'

p
2 sin dp dO.

2.
j o jo

x2^ <Zx.
6.

Jo jy

Vx*, - y^ dx dy.

3 r«
f

l°evdxdy
7

f 2 f « C
xs/z xdy dxdz

' Ji Jo y ' Ji J<> Jo a;
2 + #

2 *

4
'dzdydx

. J j^sec 2 ^),/,^. 8.
J (Jx Jo

-
+y+

161. Plane areas by double integration. The area bounded

by a plane curve (or by several curves) can be readily ex-

pressed in the form of a definite double integral. An illus-

trative example will explain the method.

Ex. 1. Find by double integration the area of the circle

(x
_ fl )2 + (y - b) 2 = r2 .

Imagine the given area divided into rectangles by a series of lines

parallel to the y-axis at equal distances Ax, and a series of lines

parallel to the x-axis at equal distances A?/.

The area of one of these rectangles is Ay • Ax. This is called the

element of area. The sum of all the rectangles interior to the circle
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will be less than the area required by the amount contained in the

small subdivisions which border the circumference of the circle.

All these neglected portions are contained within a ring bounded

by the given circle and a circle concentric with it, whose radius

is less than r by the

length of diagonal of

an element of area,

that is, of radius

r - V(A;r) 2 + (Ay)K

In other words, the

amount neglected is

less than the area of a

circular ring whose

width is

V(Ax) 2 + (A*/) 2

and which therefore

approaches zero simul- !

r
"

5

taneously with Ax and Ay. Hence the area of the circle is the limit

of the sum of all the elements of area included within it.

To find the value of the limit of this sum it is convenient

first to add together all the elements contained between two con-

secutive parallels. Let PX
P

2
be one of these parallels having the

direction of the ar-axis. Then y remains constant while x varies

from a — vV2 - (y — b) 2 (the value of the abscissa at P\) to

a + vV2 —(y — b)'1 (the value at P2 ). The limit, as Ax approaches

zero, of the sum of rectangles in the strip from PiP2 is evidently

A#[limit of sum (Ax + Ax +••)] = Ay I
a+vV-Cy-fi) 2

;-\/r2-(y-6)2

dx. (1)

Now find the limit of the sum of all such strips contained within

the circle. This requires the determination of the limit of the sum

of terms such as (1) for the different values of y corresponding to

the different strips. Since y begins at the lowest point A with the
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value b — r, and increases to b + r, the value reached at B, the final

expression for the area is

rb+r i- /*a+v'r2-(2/-&)2 ~1 fb+r ra+\Zr^-(y~b^
\ \ . .

dx \dy = \ \
,
dx dy.Jb-r LJa-VrZ-(y-b)* J Jh-r ^a-Vr2-(y-b)2

Integrating first with respect to x gives

e-w*=s=ir i>^p^= 2Vr,_ (y
_ 6)2,

Ja -vV2-(y-&)2 Ja-\/»*-(y-6)'
w '

This result is then integrated with respect to y, giving

f
>+r
2Vr2- (y - b) 2 dy = (y-b)Vr2- (y - by + r2 sm ^ —irr

r J»-

If the summation had begun by adding the rectangles in a strip

parallel to the y-axis, and then adding all of these strips, the expres-

sion for the area would take the form

) ) ,
dydx.

It is seen from the last result that the order of integration in a

double integral can be changed if the limits of integration are properly

modified at the same time.

Ex. 2. Find the area which is included between the two parabolas

y
2 = 9 x and y

2 = 72 - 9 x.

Ex. 3. Find the area between y
2 = 5a; and y = x.

Ex. 4. Find by double integration the area of the segment of the

circle x2 + y
2 = 16 cut off by the line x + y = 4.

Ex. 5. Find the area between the two curves

y
8 = x and y = xz

.

Ex. 6. Find the area between the two curves

y
2 = xs and y

2 = x.

Ex. 7. Find by double integration the area

_J2 of one loop of the polar curve p = a sin 2 0.

Fi<;. W Imagine the area divided into small ele-
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merits by means of concentric circles whose radii vary by equal

increments Ap and by means of radii drawn from the origin, the

angle between two consecutive radii being A0. (See Fig. 86.)

The area of an arbitrary element may be expressed as the differ-

ence of two circular sectors with a common angle A0 and with radii

p + Ap and p respectively. That is,

element of area = \(p + Ap) 2 A0 -
\ p

2 A0

= pA0Ap + iA0(Ap) 2
.

The sum of all the complete elements within the loop may then be

represented by the formula

^pA0Ap + i^A0(Ap) 2
.

Reasoning precisely as in Ex. 1, we find the limit of the first sum

to be

r\ /-a sin 2

The second sum may be written \ Ap2 A0 Ap, hence its limit is

n

I • lira Ap • lim ^A(9 Ap= i * ° *

J
~

Jo
dP dB = °'

Following the analogy of Ex. 1, we can easily see that all the

neglected incomplete elements of area lie within a narrow band along

the boundary of the given area, the width of which band approaches

0. Their sum therefore approaches zero in passing to the limit.

• It follows from the preceding discussion that the general formula

for area in polar coordinates is

§§pdpdO,

the limits of integration being determined by the boundary of the

given area.

Ex. 8. Find by double integration the area of the cardioid

p = a(l — cos 0).
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Ex. 9. Find the area of the lemniscate p
2 = a 2 cos 2 0.

Ex. 10. Express by double integrals the three areas between the

cardioid (Ex. 8) and the circle p = a.

Ex. 11. Find by double integration the area of the triangle whose

vertices have the rectangular coordinates (5, 2), (—3, 6), (7, 6).

Ex. 12. Find the area common to the two circles

x1 - 8 x + y
2 - 8 y + 28 = 0,

x 2 - 8a:+ y
1 - ±y + 16 =.0.

162. Volumes. The volume bounded by one or more surfaces

can be expressed as a triple integral when the equations of the

bounding surfaces are given.

Let it be required to find the volume bounded by the surface

ABC (Fig. 87) whose equation is z—f(x, y), and by the three

coordinate planes.

Imagine the figure divided into small equal rectangular

parallelopipeds by means of three series of planes, the first

series parallel to the ?/z-plane at equal distances Ax, the second

parallel to the ccz-plane at equal distances Ay, and the third

parallel to the a?2/-plane at equal distances Az. The volume

of such a rectangular solid is Ax Ay Az ; it is called the element

of volume. The limit of the sum of all such elements con-

tained in OABC is the volume required, provided that the

bounding surface ABC is continuous. For the sum of the

neglected incomplete elements, which border the surface, is

less than the volume of a shell whose outside boundary is

the given surface and whose thickness is V(A#) 2
-f-(Ay)

2
-f-(Az)

2
,

the diagonal of the element of volume. Hence the error ap-

proaches zero as the three increments diminish.

To effect this summation, add first all the elements in a
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vertical column. This corresponds to integrating with respect

to z (x and y remaining constant) from zero to f(x, y). ,
Then

add all such vertical columns contained between two consecu-

tive planes parallel to the ?/z-plaiie (x remaining constant),

which corresponds to an integration with respect to y from

y = to the value attained on the boundary of the curve AB.

Fig 87.

This value of y is found by solving the equation f(x, y)= 0.

Finally, add all such plates for values of x varying from zero

to its value at A. The result is expressed by the integral

XX X dzd 'Jdx>
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in which <f>(x) is the result of solving the equation f(x, y) =
for y, and a is the ^-coordinate of A.

Ex. 1. Find the volume of the sphere of radius a.

The equation of the sphere is

x2 + ?/
2 + z% _ a2?

or z = Va2 — x2 — y'K

Since the coordinate planes divide the volume into eight equal

portions, it is sufficient to find the volume in the first octant and

multiply the result by 8.

The volume being divided into equal rectangular solids as described

above, the integration with respect to z is equivalent to finding the

limit of the sum of all the elements contained in any vertical column.

The limits of the integration with respect to z are the values of z

corresponding to the bottom and the top of such a column, namely,

z — 0, and z = Va2 — x2 — y
2

, since the point at the top is on the sur-

face of the sphere.

The limits of integration with respect to y are found to be y =

(the value at the x-axis), and y — Va2 — x2 (the value of y at the cir-

cumference of the circle a2 — x2 — y
2 = 0, in which the sphere is cut

by the a^-plane).

Finally, the limiting values for x are zero and a, the latter being

the distance from the origin to the point in which the sphere inter-

sects the x-axis. Hence

V[= volume of sphere] = 8
j^

£

V"2-*2

^
V"2

-**-** dz dy dx.

Integration with respect to z gives

V = 8 i \ Va2 - x2 - y
2 dy dx;

then with respect to y and x,

V = 8j> [|V^^V, +^^-^-J^
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Ex. 2. Find the volume of one of the wedges cut from the cylinder

x2 + y
2 = a2 by the planes 2 = and z = mx.

Ex. 3. Find the volume common to two right circular cylinders

of the same radius a whose axes intersect at right angles.

Ex. 4. Find the volume of the cylinder (x — 1)
2 + (y — l) 2 = 1

limited by the plane z = 0, and the hyperbolic paraboloid z = xy.

Ex. 5. Find the volume of the ellipsoid

a2 b2 c2

Ex. 6. Find the volume of that portion of the elliptic paraboloid

z=l-*-£
a2 b2

which is cut off by the plane z = 0.

Ex. 7. Find by triple integration the volume of the tetrahedron

formed by the three coordinate planes and the plane x+ 2 y + 3z — 1.

Ex. 8. Find the volume of the elliptic paraboloid 2 y
2
-f 3 z'

1 — 6 x

cut off by the plane x = 2.

el. calc. — 22
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CHAPTER IX

SOME APPLICATIONS OF INTEGRAL CALCULUS TO
PROBLEMS OF MECHANICS

163. Liquid pressure on a plane vertical wall. The pressure

exerted by the liquid upon any point of a plane vertical wall

is proportional to the depth
Surface B

7 of that point below the sur-

f / face of the fluid. To calculate

\ i y
the pressure upon the entire

wall we divide it into nar-

row horizontal strips of equal

areas Ai. Denote the breadth
FlG

-
88 '

of the Jcth strip PQ (Fig. 88),

counting from the top, by hk . The pressure exerted on the

ftth strip is equivalent to the weight of a column of fluid

standing on a base of the same area AA and having an

altitude intermediate between the least depth x and the

greatest depth x + hk of points on the given strip. This

altitude may be represented by x 4-
khk in which k has a

value between and 1. If w denotes the weight of a cubic

unit of the fluid, the pressure on PQ is w(x + khk) Ai.

Summing the pressures for all the strips of the wall, we

obtain for the total pressure

^w(x + 6khk) AA.

338
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In order to evaluate this sum we take its limit as &A
approaches zero. This gives, by separating into two terms

and observing that w is constant,

Km y x &A + w lim V#A AAw
A.4=b0

The second term reduces to zero. For,

]£0A A.4 = AA^ekhk< ^A • H (since 6k < 1),

in which H denotes the total altitude of the wall ; as A^l =
the right member of this inequality approaches zero. Hence

pressure = iv I x dA.

In order to evaluate the integral, it is most convenient to

make x the variable of integration. Denote by y the width of

the wall at the depth x. Then &A = yk Ax in which yk is a

certain value of y between y and 2/+A?/. (Compare Art. 40.)

Dividing by A£ and passing to the limit we obtain, since

lim yk = y, dA = dx

dt
~ V

dt
'

or in the differential notation, dA — y dx. The substitution of

this in the above integral gives

pressure = w
j xy dx,

the limits of integration being the values of x at the top and

the bottom of the given wall or surface.

If the liquid is water and the unit of length is a foot, then

w = 62^ lb.
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EXERCISES

1. Find the pressure on the end of a rectangular tank full of water

that is 10 ft. long, 8 ft. wide, and 5 ft. deep.

2. A watermain 6 ft. in diameter is half full of water. Find the

pressure on the gate that closes the main.

3. A vertical masonry dam in the form of a trapezoid is 200 ft.

long at the surface of the water, 150 ft. long at the bottom, and 60

ft. high. What pressure must it withstand ?

4. A vertical cross section of a trough is a parabola with vertex

downwards, the latus rectum lying in the surface and being 4 ft.

long. Find the pressure on the end of the trough when it is full of

water.

5. One end of an unfinished watermain, 4 ft. in diameter, is closed

by a temporary bulkhead and the water is let in from the reservoir.

Find the pressure on the bulkhead if its center is 40 ft. below the

surface of the water in the reservoir.

164. Center of gravity. (1) For a system of n particles. Let

P
1?
P2 be two particles of matter of masses (or weights) mx

and

p m2, respectively, and let xlf
x2 be their

O
" f

*~~
distances from a chosen point O on the

Fig. 89 straight line through them. There

exists a point P such that the segments PXP and PP2 are in-

versely proportional to the masses of the two points, that is,

PiP= %_ ^
PP2

%'

Let x represent the distance OP. Then formula (1), expressed

in terms of the abscissas of the points, is

x — xl _m2
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whence, by solving for x,

mlx1 -\-m2x2 /ON

m! + m2

The point P is called the center of gravity, or, the center of

mass, of the system formed by the two points Ply P2 . If we

imagine the line PXP2 to consist of a rigid, weightless rod

with the two given particles fastened at its extremities, and if

we suppose this object to rest on the point P as a base, it will

remain in equilibrium, without any tendency in either of the

end points to move downward under the force of gravity.

In other words, the system of two particles is equivalent, as

far as the action of gravity is concerned, to a single particle,

of mass mx
-+- m2,

placed at the point P.

Let P3 be a third point of mass m3 situated on the same line

with P
x
and P2 . Then the abscissa x of the center of gravity

of the system of three points may be found by calculating the

center of gravity of the pair P3 and P (the center of gravity

for P
lf P2), the mass of P being taken as m1 -f ra2, the sum of

the masses of Px and P2 . This gives

Ox + m2)
1 l

;

—=2 + m3x3

w&i + m2 m^ 4- m2x2 -f- m3X3 m

(mx -+- WI2) + ms wh + m2 + nh
x =

In like manner the center of gravity for any number n of

particles situated on a straight line is given by the formula

- _ m^ + m2x2
-{ + mnxn

^
,^

m1 + m2 + ••• +mn

If the n particles are not on a straight line but are situated

in the same plane at the points (a^, y^), (x2, y2),
• ••, (xn1 yn ),
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then the center of gravity of the system has its abscissa given

by (3) and its ordinate y is

y = WW + m2y2 + h m^ri

m^mz-l \-mn

If the n particles are not situated in one plane, there will

be a third and similar formula for z.

(2) For a continuous solid. Imagine the solid divided up

into small elements, precisely as in determining its volume, by

means of three series of planes parallel to the coordinate

planes and at distances Ax, Ay, Az. If we regard any par-

ticular element as being very nearly of uniform density, then

the mass of an arbitrary element is approximately p Ax Ay Az,

in which p is the weight of a cubic unit of homogeneous mat-

ter having the same density as the given element. This num-

ber p is usually called the density. For a finite number of

elements the ^-coordinate of the center of gravity is determined

approximately by (3) in the form

(pigq + P1F2 + — + PA) Aa; Ay Az

0>i + p2 + >~ + pn)AxAyAz

in which xly
x2,

•• are the abscissas for the different elements

and plt p2 ,
••• are their densities. The abscissa of the center of

gravity of the given continuous solid is obtained by making

Ax, Ay, Az approach zero as a limit.* This gives

J
I I pxdxdydz

I I Ipdxdydz

* A proof of this statement will be found in Art. 166.
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the limits of integration being determined just as in calculat-

ing the volume of the solid. If the solid is homogeneous,

p is constant and cancels out of numerator and denominator.

Otherwise, it is a function of x, y, z.

In precisely the same manner the values of y and z are

obtained. The coordinates of the center of gravity are thus

found to be

x Mm j j j 9 x dx dy dz
' y =mSSSp y dx dy dz

'

'^SSSpzdxdydZi

in which p is the density at the point (x, y, z) and M is the

total mass of the given solid, that is,

M=
J J

(pdxdydz.

The coordinates of the center of gravity of a plane area are

found in like manner to be

x =—
j
Jpxdxdy, T/ = ~JJpydxdy, M=Jjpdxdy.

EXERCISES

In the following problems p is understood to be constant unless

otherwise specified. The abbreviation C. G. will be used for " center

of gravity."

1. Find the C. G. of the tetrahedron whose faces are the three

coordinate planes and the plane x + 2y + 3z = 6.

2. Find the C. G. of the volume bounded by the coordinate planes

the plane x -f y = 1, and the surface z = xy.
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3. Find the C. G. of the volume bounded by the hyperboloid

-— ^— — = 1 and the plane x = k, k > a.

a* b2 c2
r

4. Find the C. G. of the semiellipsoid on the positive side of the

xy-plane, the equation of the ellipsoidal surface being — -f ^- -\— = 1.
a2 b2 c2

5. Find the C. G. of a thin hemispherical shell of thickness h

bounded by two concentric hemispheres of radii a and a + h.

6. A hemispherical iron bowl of uniform thickness a is filled with

water. If the density of iron is seven times that of water, find the

C. G., supposing the radius of the interior of the bowl to be r.

[Hint. Find the C. G. of the iron bowl by means of Ex. 5. Find

the C. G. of the hemisphere of water and combine the centers of grav-

ity of the iron and the water by means of (2).]

7. Show that the C. G. of a triangular plate one inch thick is one

half inch below the intersection of the medians of the upper face.

8. Find the C. G. of a T-iron one inch thick, the vertical bar being

a inches wide and b inches high, and the horizontal bar a' inches wide

and V inches long.

9. Find the C. G. of a sector of a circle of radius a and angle 0.

10. Find the C. G. of the segment of the circle x2 + y* = r2 cut off

by the line x = a, < a < r.

11. Find the C. G. of the quadrant of an ellipse.

12. Find the C. G. of the segment of an ellipse cut off by the

chord joining the extremities of the major and minor axes.

13. Find the C. G. of the area bounded by the parabola

Vx+ y/y = Va
and the line x + y = a.

14. Prove that the volume of a solid of revolution is equal to the

product of the generating area by the length of path described by its

center of gravity.
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15. Find the C. G. of an octant of an ellipsoidal mass.

16. Find the C. G. of the preceding mass when the density varies

directly as the distance from the plane x = 0.

17. Find the C. G. of an octant of a sphere. From this result find

the C. G of an octant of a spherical shell of thickness h and inner

radius a.

18. Find the C. G. of an octant of a sphere if the density varies

directly as the distance from the center of the sphere.

[Hint. Divide up into thin concentric shells of equal thickness h,

the density of a particular shell being regarded as constant. Let A.

denote the radius of an arbitrary shell, X the distance of its C. G. from

the origin, and m its mass. Calculate X in terms of A by means of

Ex. 17, measuring it on a line equally inclined to the x, y, z axes.

Then use the different values of X in place of xi, X2, ••• , formula (3),

and pass to the limit.

19. Find the C. G. of a right circular cone of altitude h and base-

radius r.

This problem can be solved by single integration if we suppose the

solid divided up into thin plates of equal thickness by means of

planes parallel to the base. Then find the approximate expression

for the C. G. of any plate, apply (3), and pass to the limit.

20. Find the C. G. of the portion of the elliptical cone

—
a + f- = (z — l) 2 between the vertex (0, 0, 1) and the zv-plane.

a 2 b2

21. A cone of vertical angle 2 has its vertex on the surface of a

sphere, its axis passing through the center of the sphere.

(a) Find the C. G. of the mass outside the cone and inside the

sphere.

(b) Find the C. G. of the mass inside the sphere and inside the

cone.
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165. Moment of Inertia. The moment of inertia of a small

particle of matter of mass m about an axis is defined as the

product of the mass by the square of the distance of the

particle from the axis. It measures the resistance of the par-

ticle to rotation about the axis.

To find the moment of inertia of a homogeneous solid body,

imagine it divided up into small rectangular blocks (or ele-

ments) of dimensions Asc, Ay, Az. Then the moment of

inertia of a single element about the x'-axis is approximately

p(y
2 + z~)&x ty Az,

in which p is the density, that is, it is the weight of a cubic

unit of the given solid. Summing up these elements over the

whole body and taking the limit of the sum, we find the

moment of inertia to be *

///<p(y
2 + z

2)dxdydz
f (4)

the triple integral being extended over the entire solid, just

as was done in finding its volume.

If the solid is not homogeneous, then p is variable. Its

value at a specified point P of the given body is equal to the

weight of a homogeneous cubic unit of matter having the

same density throughout as the particle of matter at the point

P. It is a function of x, y, z which is to be determined by the

conditions of the given problem.

Similarly, the moment of inertia of a plane area about the

a>axis is defined as the limit of the sum of terms formed by

multiplying each element of area by the square of its distance

from the axis. This gives the formula

y
2 dx dy.//•

* See the next article for a completion of the proof.
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EXERCISES

In the following problems M.I. is used for brevity to denote

'•• moment of inertia." Unless the contrary is stated, the body is

homogeneous and of density p.

1. Find the M. I. of a rectangular parallelopiped of dimensions a,

b, c about an edge a.

Take three edges a, b, c meeting in a common point as the x, y, z

axes, respectively. Then by formula (4) the M. I. is

"!oTJ> + -~2) *"-yrf*-

2. Find the M. I. of a circular cylinder of radius a and altitude h

about its axis.

3. Find the M.I. of the cylinder of Ex. 2 about a line perpendicu-

lar to, and bisecting, the axis.

4. Find the M. I. of a circular cone of altitude a and base-radius

r about its axis.

Hint. If the axis of the cone is taken for the x-axis and its vertex

at the origin, the equation of the conical surface is

x2 _ y
2 + z2 "I

a2 r2 J

5. Find the M. I. of an elliptical right cylinder about its longi-

tudinal axis, the axes of the elliptical bases being 2 a, 2 b and the

altitude h.

6. Find the M.I. of the preceding solid about the minor axis of

an elliptical base.

7. Find the M.I. of the same body about a line bisecting the

longitudinal axis and parallel to the major axes of the elliptical
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8. Find the M. I. of a sphere about a diameter. Hence find the

M. I. of a spherical shell of uniform thickness h about a diameter, as-

suming that the M. I. of a solid consisting of two parts is the sum of

the moments of the separate parts.

9. Find the M.I. of a spherical solid of radius r about a diameter

if the density varies directly as the nth power of the distance from

the center.

[Hint. Imagine the sphere divided into concentric shells of equal

thickness AA and denote by X the interior radius of any shell. Using

the preceding problem, write down the element of M. L, that is, the

M.I. of the shell of radius X and thickness AA.. Take the limit of

the sum of all such elements as AA. = 0. The required M. I. is thus

obtained by a single integration.]

10. Find the M. I. of a cube of edge a about its diagonal.

[Hint. Take three faces of the cube as coordinate planes. Obtain

an expression for the square of the distance from any point (#, y, z)

to the diagonal of the cube that passes through the origin. This,

multiplied by AxAyAz, will be the element of M.I. Then take the

limit of the sum.]

11. Find the M. I. of a cylindrical shell, of length a, about its

axis, the radius of the inner surface being r and that of the outer

surface being R.

12. Find the M. I. of a rectangle of sides a, b about the side b.

13. Find the M. I. of a triangle of base b and altitude h about an

axis through a vertex parallel to the opposite side.

14. Find the M. I. of a circle of radius a about a diameter.

166. Duhamel's Theorem. In order to complete the proof

of the formulas for center of gravity and moment of inertia,

we make use of the following theorem which is of very general

use in applications of the Integral Calculus.
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Duhamel's Theorem. Let aly ol>, •••, an be positive variables,

each of which approaches zero as n increases without limit, and

suppose that the sum ai + c^-j- ••• + «n approaches a finite limit

as n = oc . Let /3i, (32 , •••, ft be variables having the same prop-

erty as the a's and such that ™ ^ = 1 for k=l, 2, • •-, n.

Then
"*

^(ft + ft* - +« =
n

1

^oo
(«1 + «2 + ...+«

B).

Since
lim & = 1, we may write & in the form l + ek in

« = «>«* «
fc

which ek approaches zero as n = oc. Hence,

ft = ak + et%,

and therefore 2 ft = S "* + S **<**•

Let e denote the positive value of the numerically greatest

term of the series e
y ,

c2, •••, e„. Then we have the inequalities

— €a 1
'^€

lal< 4-««u

— ca2 5^ e2a2 ^ 4- ca2 ,

and by adding we obtain

— «(«! + «o 4- • • • 4- «„)^2 e*«* ^ + «(«i 4- «2 4- h <*»)•

Now let n increase without limit. Since by hypothesis e =
and («!4-«2+ ••• 4- an) has a finite limit, it follows that the

first and last members of the preceding inequalities vanish at
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the limit and therefore .

Hence Jf^A-J?.S*#

As an application of the above theorem, consider the sum

occurring in the approximate formula for center of gravity,

nam6ly
'

<«%+ *%+•••+ PA)AF

in which AF= A# A?/ Az.

Let pk , xk be the minimum, and pk
", xk

" the maximum values

of p, x in the ftth element of volume. For brevity write

Pk'xk'*V=ak, Pk"xk''±V=(3k .

Then we have ak <^ pkxkAV^ /3k

hence, by taking the sum,

6 o "x "
But £-* = ^* * which approaches 1 as n increases since pk

', xk

approach equality with pk
", xk

". Hence

lim X a* = lim ]£A = lira ^pa AF.

In obtaining this result no restriction is placed on xk and pk

* A variable which has zero as a limit is often called an infinitesi-

mal. Hence ai, a2, •••, an are infinitesimals. If we write Sj. = e^, then

„ V^L — = lim ek = 0. When two infinitesimals, 5 and a, are so related that

the ratio of 5 to a has the limit zero, then 5 is said to be infinitesimal with

respect to a, or it is called an infinitesimal of a higher order than a.

Since, by Duhamel's Theorem, lim ^(a*. -f 5*) = lim 2a*i tn *8 theorem is

equivalent to saying that the limit of a sum of infinitesimals is not affected

by droppingfrom each term an infinitesimal of a higher order.
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' (1-x)2

'

33. x = kit ± -.
4 4

5 + 3 cos x 34. tan-1 2 V2.

Pages 49, 5Q Exercises on Chapter III

1. 72 x. 8. 8 tan x sec2 x (3 sec2 x --1)
2. 0. 9. 2 cot x esc2 x.

3.
3!

X4
'

5!

X6
'

6 sec4 x - 4 sec2 x.

10.

11.

12.

16 sin x cos x.

24

4.

5.

(1-x)*

48

X

6.

7.

e* logx + Ai*—^!.
x x2

2 log x + 3.

13.

14.

sinx.

_ 8(e* - e-*)
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15.

16.

17.

18.

19.

21.

8 z2e2*.

_4J
x2

'

aneax .

(-l)"w!
(x -!)"+!'

\lmx + ra^Y

(- !)"• (m+ n-1)!
(w— 1) !(a + sc)w+"

m ( - l)n-i .

(W _ 1) ;

(a + x) n

3jpa

2/
6 '

ft
4

24
- 2 a3*y

(y
2 -ax) 3

'

25.
-yr(*-i) 2 + Q/-n 2

i

a:2(y _i)3

e2*.

34. 2"- 1 cos['2a;+ —V

3--?/

(2--2/) 3

(n--1)!

2.

and 1

3.

r , max. ;
.— , min.

V3 V3

Page 53. Art. 28

Inc. from -co to i
; dec. from 1 to 1; inc. from 1 to + oo

; |

Two. + 1 at x = \ ± V^ ;
- 1 at x = J ± VJ. 4. ± tan-* ^.

Page 60. Art 34

6. — 1, max. ; — £, min.

7. — 2, min. ; 1, max.

2, max. ; 3, min. 8. e, max.

2, min.
; f, max. 9. 2n7r, min. ; also tan-i ± V|

(2 w+J)w, max.
;

(2ra + £)7r, for angles in 2d and 3d

min. for all integral values quarter. (2 n + 1) 71-

,

of w. tan-1 ± V|, 1st and 4th

quarter, max.

10. 2, min. ; — 1, max.

11. x = 3m + 4
m2 + 44w + 4=0.

2(u-l)'

-, mm.
4

Pages 63-67. Exercises on Chapter IV

Two thirds the length of the segment.

The parts are equal.

h 5. -*=• 7.
2r

V3

6. 3 inches.

V3

8. Area is ~
2
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9. The side parallel to the wall is double each of the others.

10. The altitude is equal to the diameter of the base.

11. 8 inches.

12. One mile from stopping point.

13.—Most economical per hour at 15 knots.

14. fa.

15. The altitude of the rectangle is equal to the radius.

16. The altitude is equal to the radius of the base.

20
17. — - yards from the nearest point.

> 42
- 122

19. 15 V2 feet.

20. The diameter of the sphere equals the edge of the cube.

21. ilfeet.
V2

22. Circular arc is double the radius.

23. —
, T> being the distance between the centers of the spheres.

24. Arc = 2 *r(l— Vf)

.

25. Angle at center of variable circle denned by d — cot 6.

26. The line should be bisected at the given point.

27. The altitude is f the slant height of the cone.

28. (a* + &*>*.
31

-

x = a 'P-
34. *=J2jD?feet

29. | a. 32. 20 ft.
X »

35. tan 6 = sec 0— tan </>•

30. a + 6. 33. aV\. 36. 6 = 35° 20'.

Pages 76, 77. Art. 39

3. About 3° 58' per second. 5. (3, -\e ).

4. 120 feet per minute. 6. At 5a/2 miles per hour.

7. (3,6). 9. 2ab. 11. 5 w.

8. At 60°. 10. i 2. 12. 2.
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13. 1 and 5.

16. S ~64' '~32

17.
a
16'

Page

19. ± 16, =F 12 feet per second.

20. sin • d<t>.

36
21. —:rrL radians per second.

V37*

Page 83. Exercises on Chapter VI

1. -J^+JE, 2V^x, 4tt\/^+ ax, 4wax. 2. 2, 2.
* x y x

3. secx. 5. ,-^(a2 -a:2
).

7. V2 ap.

a z

4. Tra2^ 6 p Vl + (loga) 2
. p

9. 30 7t, 72 ir. 10. f sin d, 90°, 270°
; 2, - 2.

Pages 87-89. Art. 48

I
Xix . yiy _ 1

4. (a) x + 2 */ = 4 a,

a2 62 ' y-2x + 3a = 0.

y yi Mb/ y = T2x±3.
2. y = x. (7) */ = x+p, x + y-3i>=0.

3. 2y = 9x -3, 9y + 2x = 29. 5. 3. 6. 4^17.

7. (a) Parallel at points of intersection with ax + hy = 0.

Perpendicular at points of intersection with hx + &?/ = 0.

(j8) Parallel at f—^-z,
8 *y 2 >

) ;
perpendicular at X = 0.

(7) Parallel at (—, fL^iiA . perpendicular at (0, 0); (2 a, 0).

8. _ =
, i.e. they must be confocal.

a b a' b'

IT
12.

2 2 nx

13.
2c + a

. 19. (2p, ±2pV2).
o

Page 95. Art. 51

1. An inflexion at x = y = 2.

, /2o 3a\ /-2o 3o\
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8. Point of inflexion at (a, $a), tangent is x + y=-£. Bending
o

changes from negative to positive.

10. (- 1,l),(2 ± V3,^^g).

Page 103. Art. 57

1. y = 0, x = a, x = — a.

2. x = 0, x = 2 a, 2/ = a, y = — a.

3. y= a, y=—a ; two imaginary.

4. y = « ; x = c twice.

5. y = — x + -
; two imaginary.

o

6. x = 1 ; one parabolic branch.

8. a* = twice ; one parabolic

branch.

9. x - 0, y - 0, x + y = 0.

10. y = # ; two imaginary.

11. x + y + a=0; two imaginary.

12. y -f sr, = ; two imaginary.

13. x = twice ; x = y, x = — y.

14. y=x, y=— x; two imaginary.

7.- x =— a, y= — 6, y=x + b-a. 15. a;+2y-0,x+y=l,a--y= — 1.

Page 107. Art. 60

1. yff = 6.

2. Polar subtangent = — , Polar normal= y/a?+p\ Polar subnormal= a.

3. yff = - + 2 0, Subtangent = - p cot 2 0, Tangent = q2p
.

2 Va4-V
Subnormal =- a

'

2sin2 *
, Normal =£

P P

5. ^,2asin2^.tan^.
2 2 2

7. They have a common tangent at the pole ; elsewhere, -.

3. 1.

Page 111. Art. 62

4. (ar + y) cos xy. 5. 1.

Page 115. Art 63

5. \ square units. 6. 5Vlo! Differs by dxdy.



364 ANSWERS

Page 117 Art. 65

3 _ ax + hy + g .

?
3

hx + by +f ' VlT^'

4.
x~. 8. *=1.
y
3

&> + x

6 . 2l + Vy+U. 9.
yCco8(gy)-e^-2or1

>

s s x [x + e2* — cos {xy)~\

Page 121. Art. 66

2. 8 a; + 8 y - z - 12 = 0. 5. — + JL + JL = at

•

£Ci* ^ z\^

3. »=J s=t^=«=» 7 . 008-i_i<L. 8 . JL.
1 - 4 3 V119 V17

9. 2* 1* + „»-«1. = 0; ^fl=r=H=st^l.
2 5Ci «/i

— *i

10. 2x + 2V3y + 3s = 25, x + s = 5.

Pages 128-130. Art. 72

2. **-2y^ = 0. 11. ^ + ^+y=0.
dy'2 dy dy2 dy

Q r h(f)T
d2x

dy2

4.
fd%x cPx\ dx_Q
\dys dy2

) dy

5. £* = cos's + 2(-T
dx2 \dxJ

6.

dy*

8. ^L + y = 0.
du2

9. SUO.

12. 2z
d2z

, n f dz+ 2(^\
dx2 \dxj

+ (l-z2)2z— +z* = 0.

dx

13. ff+«/=0.dt2

14. ^ + ^ = 0.
d£3

d«2
< d«

16.

dl> 17. -6.

Page 137. Art. 74

6. Divergent. 7 Convergent. 8. Convergent in both cases.
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Page 140. Art. 75

6. -1<x<1. 7. |s|>l. 8. -a<x<a.

Page 145. Art. 77

2. ' /(s) = (x-l) 3 +(x-l)2 + 4(a:-l)-3.

/(1.02) =- 2.919592, /(1.01) = - 2.959899.

/(.99) =- 3.038901, /( .98) = - 3.079608.

3. 3(y-3) 2+4(y-3)-8. 4. sin 31° = .51508.

Page 149. Art. 78

1. x+ ??+2-x*+B. 3. .000002.
3 15

6. .017452. 7. 1 — — — — + ^.
2 8

y/S l/„ tt\ V3
2 2

9. ? + e?K + —h* + B.

10. 15 + 24 (a: - 2) + 13 (x - 2)2 + 3 (a - 2) 8
.

U.log« + *- ". + -»-».+*.8
. a; 2 a;

2 3 Xs 4 a:
4

12. - 4 (a; + 1) + 6 (x + l) 2 - 4 (x + 1)3 + (x + l) 4
.

14. 5.013. 16. 3.433987.

15. 11.0087. 17. .0127.-..

18. 1 - (* - 1) + (x - l) 2 - (x - \f + B. to 2.

Pages 159, 160. Art. 83

2.
2 a2

a2 + 62
3.

13

7
' 4. JL.

2a

Pages 163, 164. Art. 85

3. f 5. f 8. -4,

4. 4. 7. *
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Page 164. Art. 85

1. 0.

6
9. 1.

2- 2. 6. I. 10. _?,
n 3

3- 3. 7. 1. 11. I
]oga

log b

'

4. !^?. * 1.

Page 166. Art. 86

1- 1- 3. 0. 5. -$.
2. 0. 4. 5. 6. 1.

«• e 2c2.

Page 171. Art. 89

1. First. 6. Second.

2. They do not touch. 7. a = — 1.

3. Third. 8. y = 2 a;
2 - 5 x + 4.

4. 3i(x-a) = a(2/-a). 9 a. (— 2, - 8), First.

5. y + 12x = 10. 96. (- 2, -8), Second.

10. y=-x2 + 2x + 3, $ x =-3y2 + Uy-36.
2. First. 13. Second.

2 a.

a
.

2*

Page 179. Art. 97

6 (*
2 + rcV)2

n(n — l)xy

i.

2.

9
aVx(8a-3x)*

3(2 a - xy

3.

4.

00

.

(z2 + ?/
2)*

2 m2

7
2(z + 2/)^

Va

10. «!.
a

5.
(e2x2 - a2)^

a& 8. 3(aa*/)*-

Page 181. Art. 98

3
a(5-
9-

11. ( * _j_y
V3V2 54V2"/

1.

2.

pVl + (log a) 2 -

- 4 cos 0)*

- 6 cos
3,
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2p* 6
4x/^

3
Va

5. -if.
a2

1. a = 0, /3 = 0.

7
q(l + gg)*

Page 188. Art. 100

2. a _alog-—

-

,
p--.

b (« + i8
)!-(«-/S)i = (4a)t.

. a=x-^(ea -e a ),p = 2y.

. (a + )3)f-(a-/3)§ = (4a;

.
, 1K . , . 6. (aa)*- (6/3)'- = ( a2 + 62 )t.

3 ce = q + 15 y 8 = ay ~ ° y

6 a-V 2 a* 7. (a + B)% + (a - /3)t = 2 ai

16. a = a(0' - sin 6"), p = a(l - cos #'), 0'= - tt.

Pages 198, 199. Exercises on Chapter XIII

1. (0, 0) ; ax±by = 0. 6. Two nodes at infinity ; the

asymptotes arex= v-|-l, x+y=±\.
2. (O,0);cuspoffirstkind,y=0. m , n x ,

' / _V
'

.
*" 7. (0, -a); (+a, 0); (-«,0:)

3. Four cusps of first kind ; the tangents are, respectively,

(0, ± a), (± a, 0) ; y = 0,a; = 0. V% + a) = ±V2a;
2(.z+a) = ±\/3y;

4. (0, 0) ;
conjugate point with 2 (x -a) = ±VSy.

real coincident tangents, y = 0. / Ax° '
"

8. (— a, 0) ; conjugate points.

5. (0, a); y = a + *J cusp of 9 (0, 0) ; » = 0, y =0.

second kind. 10. (0, 0) ; is a tacnode
; y = 0.

12. Terminating point at (0, 0)

.

Pages 207, 208. Exercises on Chapter XIV
1. x2 + y

l = p2
. 7. y

2 = 4 a(2 a - x).

2. xf + i/f = ai »• &2x2+(a2 fW=62(a2+ &2 ).

3. x$ + yl = cf.
9 - (*2 + ?/

2
)
2 = 4 c2(^2 " y'2 )'

4. 4xy = k*.
10 - 16y3 + 27^ = 0.

5. (x - a) 2 + (y - py = r2 .
11 - y±s±fc = 0.

6. y2(x + 2a) 4-a* = 0. 12. (x2+y2 -ay) 2=a2(x2+0/+a) 2
).

13. 62x2 + a2
y
2 = 4 a262 .
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Pages 215-216. Art. 114

1.
„ 3

21. — cos nx.

2.
xa+l

n

a+ 1 22.
x . sin 2 x

2 4

3.

4.
2 to

X«H
am
~\L ,.

23.

24.

x sin 2 x

2 4

cos (to 4 n) x

5. ax - \ aH* + | a*05* - £ x2. m+n

6. 5kJx-f -J* JL.
e

2x2 3x8

25.

26.

— | COS X2.

sin x — ^ sin3 x.

7. H^2 + «2
)
3

- 27. — cos x + I COS3 X.

8.
(atx + &)

n+1
28. tan x — x.

JoT+1) 29. | tan3 x.

9.

10.

log;(x 4 a).

| log (2 ax - x2).
30. — cot (ax 4 6).

a

11. — log cot X. 31. - f (cot x)l
12. — log (1 + cos a). 32. log tan x.

13. log (logx). 33. \ sec3 x.

14. flog(x3 4l). 34. — cos X.

15.

16.

— log COS X.

log sin x.
35. sin-i^.

a

17. - eax .

36. i sin-1 2a;.

18.

a
37.

a a

19.
(a 4- b)m+nx

w log (a 4- 6)

38. A tan-i^-
ab b

20. | sin 2 x. 39. tan- 1 (x-2).

Page 219. Art. 115

1. x sin^x + Vl — x2
.

3. _X* Sill x -f- Z X COS X -

2. ex tan -1 ex — \ log (1 4- e*). 4. J2±i(log* *

n + 1 V n + 1
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5. A[2z3 tan-ix-z2+ log(l+*2)]. Q £e*(sin x + cos x).

6. sec x [log cos x + 1J. 10. | e* (sin x - cos x)

.

7. J [(*» +1)001-1* + *;]. 11. icosxsin2x-icos2xsinx.
8. Ksin3*-3*cos3*]. 12. x tan x + log cos x.

Pages 220-222. Art. 116
4. Ksin-i*)2.

i, , «
11. log tan-.

6. Jcos(*2+ l)[l-logcos(*2+ i)]. 2

12. log tan g + |).

13. -§(a3-x*)i

7. sin-i «

a

8. I tan-i «

a a

9. ±cos-i«.
a *

10. sin-i^-^
a

14. log (x - 1) -

15.
1

2

x-1 2(x-l)

2 sin 2 *

16. -^tan-^v^tan*).
V2

Page 226. Art. 118

1. -i-logV^Cg+l)-!. 3 . _± lo|f *=*.
2V2 V2(x+1)+1 12 °x+l

2. -i_ tan-ii^l. 4. £sin-i(3* - 5).
Vl4 V14

'

5. Vx2 + 2 x + 2 - log(x + 1 + Vx2 + 2 * + 2).

6. - V-*2 + 2 x + 1 + sin-i^ni.
V2

7. .-V/8-4*-4*2 + 3 sin-i2*_+l -
2

3

8 ^V3x^ + x-'2-~ log(aj + | + Vx2 + i x - f).

9- ^Vl+*-2*2 + -JL_ sin -i
43-l

t

2 4V2 3

10. ^ log (x- 5) -| log (x-1).

11. Vax - x2 + ? sin-i 2-^J?

.

2 a
el. calc.— 24
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12. - V- 2 x2 - 3 x - 1 - sin" 1 (4x + 3).

13. -lVi-2*-3^--^-sin-i 3a; + 1

3

2 V2

10

3V3

i log («_±^)

Page 227. Art. 119

2

3. -lo

4.

l-2x + V5^-4a;+ 1

/a+V«2 -a2
\

1 , /V2 + Vx2 + 2z + 3\

~VS
lQg

(
"¥+1 J

lo<
/ 1 — a; + 2 Vz2 + x+J \ 6. sin-

V2 (x - 1)

7 .

_l
]o(f

/l-x+V-x*-10x-r

9.

a2z
10

5C + 2

Vx2 + a'2

— Va2 — x2

11. -JLrin-i 3 ~ 2 *_
V2 V3(2 x - 1)

Pages 227-228. Exercises on Chapter I

3. i log (6 x^ + 12 a; + 5)2. 5 tan-i-.
8 2

4. *£(! + **). 5. -f(3-2,)t
6. ^

7. _| (d«_rf)

10. I sin 8 x.

12. — cos e*.

V,2 + 1

Ks + l) 1 - *(*-!)*.

11. 1 log tan ^^ + -1
3

s
V 2 4J

13. log (a cos se + b).
a

14. - log (e~x + Ve~2x - 1)

.

15. I sin-i x2
.

2V2 L * J
2

&
e* + l

18. i a* tan-i x - ^ *4 + rV *2 - tV log (*
2 + 1)
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19. -f2 + 2xloga + (x\ogaf}^
2Q tiind _ secd .

a* (log a) 3

.21. -cot?. 22.
logCgcoB'g + ftBin'^

2 2(6 -a)

23. -JVl-logx. 24. ilog(e'^ + l). 25. sin-i

/

2 sin ^ + 1V

26. tan- 1 (logic). 27
6(a — 6 tana;)

2'28. irin-ir^-^+^1
L V5 a2 J

V3x2 + 2x+l + logp + l+V3*» + 2s+r

30. -— log (a; + Vx2 - a2 ) +
Vx2 — a2

2 x2 2 a2x

31. — cos x log tan x + log tan -

.

32. \x — \ log (sin x + cosx).

Pages 236-237. Exercises on Chapter II

1. *(s a -2 _ 2 x2
) Va2 - x2 +— sin-i? .

2. ir_JL_ + ltan-i2l. 5. - Va2 - x2 + ^sin-i?-
8|_x2 + 4 2 2j 2 2 a

3.
2a; - 1 -f-i-tan-i^l. 6. - ^ZEZ.

3(x2 -x + l) 3V3 V3

4. _?v/a2 -x2 +— sin-i-. 7. + '
2x
_

8. ~ (2 x2 + 5 a2
) Vx2 + «" +— log (x + Vx2 + a2

)

.

9. - Vx2 + a + ^log(x -f Vx2 + a).

10. -(2 x2 - ax - 3 a2
)V2 ax - x2 + ^ sin-i—- •

6 2 a

n (2ax-x2)?
12>

_Vl
3 ax3 2 x*<

13 3fa + 2)«-5(g + 2) 3
t

x + 1

8(x2 + 4 x + 3) 2 16 ° x + 3
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14. l(x + l)Vl-2x-x2 + sin-i«±i
2 V2

V^EI-lrin-ll. 18-

17.

SILL • / -
r-

2 x2 2 x aVa + bx2

-1 19.
- cos *

2(x2 + 7)' (1 + e) Vl + esin2

20. -(2x2 - a2)Va2 - x2 + ^siiT^-
8 8 a

21. — (33 a4 - 26 a2x2 + 8 x*) Va2 - x2 + ^- sin-i - •

48 16 a

Page 241. Art. 122

1. JLlog^. 3. ^-4,+^logi^I3

2c x + a 2
T

2 ° x + 1

2. w (
x + 1

)
2

4- x + log(x-a)«(x-&)».
x(x — 1)

5.
2_±^§log(x-2-V3)-^^log(x-2+V3).
2V3 2V3

6 li0(y
(^-l)^-2)

. 7 . iog
(«-«)(« - 6 > .

20
& (2x+l)(x + 2) x-c

8. x +^— [a2 log(x + a)-&2 log(x + 6)].
& — a

9. log[(x + 2)V2x-l]. 12. ^-7x + 641og(x + 4)

10 . log
(x- a)(, + 6J,

-271og(x + 3).

2 a& ax + &

t1 1. x6 14 I iog ! + ^

.

u
- 3

l0g
(2-T^xr^^ 2

log
i-.

Page 243. Art. 123

L
"2(x-l)

+
I
l0g ^l*

3
" 2(a2 - x2 )

'

2
- ^ + log^ 4

' v^Tvii*

5 . ^_2x +^^ + logx(x4-l) 2
.

2 x2 + x
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6. log(x2 -a2)--^ a2

x*-a* 4(V2 + l-a;)2

8. ax-- + log
x x + a

9. x +-L-l[28\og(x + S)-\ogxl
ox y

10. Aiog^±_^_±. ll. a;__A^_51og(x-3).
a2 x ax x — S

Page 244. Art. 124

1. log *—

.

2. llog aj, + 1
a + -tan-ig.

°V^T4 4 *> + l) 2 ^2

3. — [log(x + a)--log(x*-ax+a2
) + V3 tan-*

2 * ~_a ~|

.

3a2 L 2 aV3 J

4. - 1 tan-* - + - tan-i ?

.

7. — tan-i*
a aft b 2 a (x — a) 2 a2 a

6. __Ltan-i-^5—

.

9. log
x ~ 1

-tan-* a.

V3 2x2 + l V^+T

Page 24b. Art. 125

1. tan-i* + _^-. 2. Atan-i«U ?7
2<*

x2 + 1 2 a a 2 (x2 + a2
)

3. llog *2 + 1
4-

z - 1
.

4
&
(x + l) 2 2(z2 +l)

4 -g + Slog^^- 3 + 2 * -Stan-ix.
x x 2(.r2 + l)

5. + log (x2 + a2
) - J_ tan-i? #

2 (x2 + a2
)

5 V J
2 a a

6. —

-

+ilog(x2 + l).
x*+l 4(x2 + l) 2 2

&K '
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Page 249. Art. 127

1. log
Vx + 1 ~i

. 2. 2Vx-3?/x + Qfyx-6log(fyx + l).

y/x + 1 + 1

3. 2 log ( Vx - 1 + 1) +
Vx - 1 + 1

4. 2tan-iVx-2. 5. llog^ a^-
&

& Vx — a -f 6

6. 14 (xT? - i-xt + J xt? - | x7 + i XT?).

Page 252. Art. 128

L »l-xj x-l + Vl-a:2

2 . _ 21og [-V2 +V^].
Pages 253-254. Exercises on Chapter IV

1. 2 V3 tan-iV^V^ ~ V^ ~ 1#

. 3 l 3 V2(x-a)*-l
2. o(x-a)^ -log *> '- .

* 4V2 V2(x-a)^ + l

3. x-4Vx+ 1 + 81og(Vx + l +2).

2 2Vx^T + l
4. log(x+Vx-l) -tan" 1

V3 V3

5. M2x-3a)(a + x)i
?

1
1q
„ V^IT^r + sVS

6. 6 log (** - 3xU 5).
" 2^«2

° V*2 - ^ " *V*

8. i[x2 -xVx2 - 1 +log(x+ Vx2 -1)].

9. f x^
-

f x^ + f x* + 2 x^ - 3 x* - 6 x^ + 3 log (x* + 1) + 6 tan" 1 !*;*.

10. -$(2a* + s2)V^V. vgr^
,, . a, „ Va2— x'2— a a2x
11. Va2 -x2 + o

l0S
2 Va2-x2 4-a

Va2 - x'
2

• _, x 14.

12. -— ^_sin-i-. a2Vx2 + a2
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15
x(2x2 + 3a2

)
_ lg

1^ Va*+z*+x Va2 +

3a4 (x2 + «2)^
2 ° Va^+x^-x x

17.

«Va2 - x2

Page 256. Art. 131

5. f esc3 x — cot x — | cot3 X.

6. - 64 [cot 4 x + -|- cot3 4 a]

.

3. tan x + | tan3
a; + A tan5 x. 13

7. — + log tan x.
4. — 128 [cot 2x + cot3 2 a; 2 tan- a;

+ |cot5 2x+ 1 cot7 2x]. 8. - \ cot3 x - i cot5 x.

Page 257. Art. 132

1. £ sec4 £ — \ sec 2 x. 5. \ sec4 x — sec2 x +
2. — 4. esc7 x + | esc6 x

— | esc3 a:.
6.

sec" -1 x secn-3 x

n — 1 w — 3

3. -
[
-sec5 ax— sec3 ax+ sec ax

)

.

a\5 3 /
7. log sec x.

4. — (sinx + cscx). 8. — log CSC X.

Pages 259-260. Art. 133

1.
_i Cot3 x + cotx + x. tan-ix

4.

2. — tan2 ax log sec ax. w

2a a °

3. i (tan 2 x + cot2 x) 5
- i tan? K - I tan5 « + i tan3 «

+ 4 log (sin x cos x)

.

—
t'an x + x -

Page 260. Art. 134 (a)

1. — COS X + | COS3 X. _4 2 8

_ . , 4. | cos 3 x + 3 cos 3 x — | cos' x.
2. — |cos5 x + \ cos' x.

8

3. log sin x - sin2 x + J sin4 x. 5. |(1 - cosx) z - |(1 - cosx)*.

Page 261. Art. 134 (6)

1. — $cot3 x.

2. -cotx-fcot3 x-icot5 x.
5

-
!Vtanx(tanx-3cotx).

3. _ cot5 x (i + \ cot2 x). 6.
tann" ly + taD "+lx

-

w — 1 w + 1
4. — I cot3 x — 2 cot x + tan x.



376 ANSWERS

Page 262. Art. 134 (c)

1. | x — £% sin 4 x.

2- xis (^ # + t s in3 2 £ — sin 4 x — \ sin 8 x)

.

3. T|s(3x — sin 4 a; + fsin8x).

4. |(3 x + sin 4 a + | sin 8x). 5. tan x + £ sin 2 x — § x.

Page 264. Art. 134 (d)

1. |(x — sin x cos x) . 2. ^ cot x(cos2 x — 3)— §x.

3. — | sin3 x — sin x + log tan (- + -].

4. — \ cot 2 x esc 2 x + J log tan x.

5. | x + 2 cot x + \ sin x cos x — £ cot3 x.

Page 265. Art. 135

1. Jtan-i(^tanx). 2. - tan-i f~2 tan (* - -\~|.

1 , tanx-2-V3
3.

2 V3 tan x - 2 + V3

x
b tan - - o + vV + b2

4. —— log .

v a2 + 6 2
6 tan ^ - a - Va2 + 52

-1 7. J-tan-if^Y
V2 W2 /a (a tan x + &)

6. i-tan-if^i^y 8
' 2

a& \ b J

l
i

2
log

tan - - 3
2

Pages 266-267. Exercises on Chapter V
3. 2 Vtan x. . 4. J tan4 x + \ tan2 x.

5. - cscx + log tan I-• + -
j.

6. - tan2 x sin x + § fsin x - log tan (* + *\~]
. 7. ^ + x

• •
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?, x 11. I ex (sin x + cos a: — f sin3x
8. 62^sin- + cos-j. _; Cos3x).

9. — $ e
_I (sin 2 a; + 2 cos 2 x). 15

sin^x _ sin"+ 3x

10. i e2x(2 - sin 2 x - cos 2 x).
w + X n + 3

16. §tan*x — 2Vcotx.

17. - 32 cot 2 x(l + 1 cot/2 2 x + $ cot4 2 x).

18.
J-
tan | x(l + | tan2 \ x + \ tan4 § x).

19. log tan 2 x. 20. - 8 [cot 2 x + ^ cot3 2 x]

.

21
1 / Va2 -x2 \«

22 ^^ +^6^^^, +^^
-• i(S

+ |)- + i(5-|)
ta«^ + ^>-

24. x cos (« — &) + sin (a — b) log sin (x + 6).

Pages 281-283. Art. 142

2. fp*A 3. 2. 4. 36 V3. 5. 40V5.

6.
f. 7. fv^. 8. i. 9. £. 10. Trr2 . 11. f|.

12. 4 a2 tan- 1 ^i-
; 4 Tra2 . 13. *•«&. 14. if* - 72 log 2.

2a'
2

15.
*.-<*

16 24-8^
17 f lg< ^ fl)

|

log a 5

20. 3 2 OJ * . ^ -|- I

To3 '
' 2' 2(6'- 1)

" 22. a2 logra. 23. 1. 25. -.&
6

26. A. 27. 4a&tan-1 5. 28.T5
a

2V2. 29. I°£i. 30. *
.
IzlT"

7T 7T 7T

31. ^(4-tt).
2

V ;

Pages 287-289. Art. 143

Ex. 4. 2-. 1. 4. 2. oo. 3. 3. 4. 4 a2 .

2

5. oo. 6. 3tt«2
. 7. 2tt.
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Pages 290-291. Art. 144

1. vab. 2. lira2
. 3. f.

4 lZ. 5
3y(g2-68)a

|

4 8a6

Page 292. Art. 145

2. a\ 7.

2 n. h
3.

4.

Ti-r
2

.

3 7rr2
#

8.
«27r3

24

12. !•

5.

2

25 7T.

9. -log
2 *

ft
;)•

13.
3tt

8
'

6.
c /

2
(P1

"-/>2). 10.
n

14.
7T

5

5
'

Pages 296-297. Art. 148

In the following answers the values are given for Simpson's formula

only, unless the trapezoidal formula is called for in the problem.

1. 22 ; 21.5. 3. 0.500014 ; 0.500002 ; 0.5000014 ;
0.5000011.

4. 5.2523. 5. 37.8555; 36.5261. 6. 0.9996. 7. 8.0047.

8. 39.6465. 9. 0.7593. 10. 0.7468. 11. 0.4443.

12. 335. 13. 3.006. 14. 1.1873; 1.1830; 11931.

15. 0.5633.

6. \irab.

7. \irab.

8. \AK.

Pages 300-302. Art. 149

a irabp
9. _.

10. 4£ cu. ft.

12. | wa8 cos4 6.

13. 1 trabc*.

11. fa3
. 14. fr8 .

Pages 304-306. Art. 150

1. jrL(io_3 7r). 2. 27rrl(2r2+a2)Vr2-^-ar2 sin-i^2^1.
6V2 L3 « J

3. 7tt. 4. -7T
3
|«i« + ax{* + 4 eflxt + 8 a3

]og (~=^\
]
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5. 2 7r
2a3

. 6 .
i*^. 7. firr3 . 8. x/fc3 ; oo.

o

9. ^^- 10. Sf. 11. 4 «*««.
105 15

12. 7rr8a3 log^-4a2(2a-?/i)]; oo. 13. 5*-2a3
. 14. ^~-5. 7rr8a3 log^-4a2(2a-yi)l; oo. 13. 57r2a3
. 14.

Pages 308-309. Art. 151

1. p[V2 4-log(l+ V'2)]. 6la
3 logVS'216' • 5 •

4. 6 a. 5. 2irr. 6. - (e - e" 1
). 7. }f-

8. 2-V2 + log
1i^.

9 .

4 («
3 - &3

>
. 10. alogS-^a.

V3 aft
&

*

Page 310. Art. 152

1. (p2 -pi)Va2 + 1. 2. 2ira. 3. 8 a.

4. a [tan* sec I + log tan (1+^~|*
2

.

5. ^[flV^ + l + log (5 + V^ + l)] \

c (7r2 + 4)t 8 w A , 2 ,_
•• —f- -3 7. 4+— log(V3+2).

9. 2a[~V5-2-v/31og
V5+V5 .T

L \/2(2+ V3)J
8 .

3ira a o-f,/5 o ,/5u„ V3 + V5 1
2

Page 311 Art. 153

1. 8a. 2. JJWL. 3. 6 a . 4. la*!2
.

ra — 1

7. ^[(4 + 9ti«)*-8].

Pages 313-315. Art. 154

1. Tra^l-^V 3. f^Cv/S-l).

2.^-2).'' 4
' f[3V2-log(l + V2)].
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5. (a) 2irb(b + -

—

cos- 1 -

V Va2 -&2 a

(6 ) 2^ + -Jgg- log r« + vtf'-y -|.

Va2 - b2 La - Va2 - 62J

«• ¥«2
- 7. («) tiWoH^; 9 ¥»*•

8. 4*-d* (/S) 7ra\/«2 + &2 . 10. 4 7r
2aA:; 2w2a2k.

11. 2 7ra2 (3 sin f i — 3 ii cos <i — t\
2 sin £i).

Pages 316-320. Art. 155

2. p = ea . 4. p = — a cos + C.

5. y*= ax2 + 6. 6. p
n = c sin n0. Straight line. Cardioid.

7. y = eax+ c
. 8. p:

-h).

_ cea 9 ™1 10. 2 7ra2 . 11. a log -2.

3 */i

13. Va2 + b2 (t2 14. 22.7 lb. 15. 0.9627 lb. 16. 4.4312.

17. h = 5.28 in. 18. h = 43.17 lb.

Pages 323-324. Art. 156

3. xy = ay2 + by — \. 4. y = kx (log x - 1) + ax + b. 5. T
4
3 &«£.

6, y = 0.0002 x3 + 0.0036z + 1.12, slope = 0.0006 a2 + 0.0036 ; a=20,

y = 2.792, slope = 0.2436.

7. 1000 y= -0.046 x3 + 0.75 x2 - 2 05 x + 40; 1000?/= ^ a8 -0.0575 x2

-9.7x+117.91§.

Page 328. Art. 158

1. xy+C. 3. Impossible. 5. x3 + y
3 — 3 axy + C.

2. - cos a cos y + C. 4. log-+C. 6. tan-^+C.
y y

7. | a3 + x2
?/ + 5 x + £ ?/

3 - \y2 + <7.

8. £ x5 + xy4 + $ x3 - xy2 + | y
2 - \ y* + 2 ?/ + (7.

Page 330. Art. 160

1. —= 3. J.
5. | a". 7 - «•

2\/2
Z 3 2

2. 4. 4. 1. 6. 6&3
. 8. J log 2.
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Pages 332-334. Art. 161

6. &. c Srfl;

Kd 22. 64. 4. 4 7T - 8.

3. 4£. 5. 1.
'8

9. a2
.

/•y /» a /"a /*7r /*ir /*o(l— cos 0)

10. 2l"f pdpdtf;2j I _ Vi p
.pfZ^p;2l | prfpdfl.

JO Ja(l-co8 0) JO Jcos {}-*) JnJa
a

2

1L 20. 12. §JH—2V3.
o

Pages 336-337. Art. 162

3 3 * 2
^

Page 340. Art. 163

1. 62251b. 2. 1120.51b. 3. 9337.5 tons. 4. 66.41b. 5. 15.645 tons.

Pages 343-345. Art. 164

i. (t,M).
2 (fcfA). 4 . fo,o,^-

cV
3. x = 8(*+ a >

g

,y = g = 0.
V 8;

4(& + 2a)'^

- 3|"(a + ft)
4 a4 "!

from center of sphere.
' 8|_(a + ft)

3 -a3J

3r7(r + «) 4 -6^-| from herical
8L7(r + a) 3 -6^J

center.

g
af + 2 flW + a^ above tne base .

2(ab + a'b')

o
9. from the vertex.

4 a sin T

~3

2(r2 — a'2^
10. from center of circle.

3 (V2 cos- 1 --aVr2 - a2
)

» (& £)• 1S
(¥• t)-

10 / 2fl 2 6 \ « /3a 36 3c\
12

[S(^Y) ' 3(7325)-
15

' U ' 8 ' 8 j
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16
(*u l6-^ 16 c\

V15' 157r' 15 tt/

17 (<L* 8a 3«\. - - = ^ = 3r (« + ft)*-g*-i

'

\ 8 ' 8 ' 8 /' 8L(a + ^) 3 -a3J

18. x = y = z =— -

5

19. (0, 0, — j, the base of the cone being in xy-pl&ne. 20. (0, 0, \)

21. (a) a cos2 ; (6) a ( 1 H —
] both measured from the vertex,

\ 1 + cos2 d

)

Pages 347-348. Art. 165

1. «^(&2 + c2). 6. !!^(3«2 + 4^2
).

o 12

2. ^ ira^h. ^ Tra&fr /g &2 i #2)

3.
7^(3 a2 + /l2) <

12
8. *£; ^[(r + fc).-,*].

4
ttoH 15 15

10 '

g
8 7IT"+5

5. \ Trabh(a2 + tf)

.

' 3(n + 5)'

10. ia5
. 11. ^ira(2?*-r*). 12. ^a36. 13. \bh*. 14. iira*
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(The numbers refer to pages)

Absolute value, 134.

Absolutely convergent,

134.

Acceleration, 77.

Actual velocity, 68.

Approximate integra-

tion, 292.

Arc, length of, 306.

Area, by double integra-

tion, 330.

derivative of, 79.

formula for, 273, 280.

in polar coordinates,

291.

in rectangular coordi-

nates, 273.

Asymptotes, 96.

Average curvature, 176.

Bending, direction of,

90.

Cardioid , area of, 292, 333.

Catenary, 180, 316.

length of arc, 309.

volume of revolution,

312.

Catenoid, 313.

Cauchy's form of remain-

der, 153.

Center of curvature, 172.

Center of gravity, 340.

Change of variable, 124.

Circle, area by double
integration, 331.

of curvature, 172.

Cissoid, 180.

area of, 289.

Component velocity, 70.

Concave, 89.

toward axis, 94.

Conditionally conver-
gent, 134.

Conditions for contact,

168.

Conjugate point, 197.

Conoid, 301.

Constant, 15.

factor, 25, 213.

of integration, 214.

Contact, 167.

of odd and even order,

169.

Continuity, 19, 109.

Continuous function, 19.

Convergence, 132.

Convex, 94.

to the axis, 94.

Critical values, 55.

Cubical parabola, 281.

Cusp, 194.

Cycloid, length of, 311.

surface of revolution,

315.

Decreasing function, 51.

Definite integral, 270.

geometric meaning of,

273.

multiple integral, 329.

Dependent variable, 15.

Derivative, 21, 22.

of arc, 79.

of area, 78.

of surface, 81.

of volume, 81.

Determinate value, 158.

Development, 131, 160.

Differentials, 74, 210.

integration of, 326.

total, 112.

Differentiation, 23.

of elementary forms,

44, 45.

Direction of curvature,

175.

Discontinuous function,

20.

Divergent series, 132.

Duhamel's theorem, 348.

383

Ellipse, area of, 281.

evolute of, 190, 309.

parametric form, 290.

Ellipsoid, volume, 299.

Envelope, 200.

Epicycloid, length of, 311.

Equiangular spiral, 316.

Evaluation, 160, 165.

Evolute, 182.

of ellipse, 190, 183, 291.

of parabola, 183.

Expansion of functions,

131.

Exterior rectangles, 269.

Family of curves, 200.

Formula for integration

by parts, 216.

Formulas of differentia-

tion, 44, 45.

of integration, 211, 224.

of reduction, 229, 262.

Function, 15.

Helix, 318.

Hyperbolic branches, 95.

spiral, area of, 292.

Hypocycloid, area of, 290.

length of arc of, 308,

311.

volume of revolution

of, 305.

Implicit function, 33.

Impossibility of reduc-

tion, 232.

Increasing function, 51.

Increment, 21.

Independent variable, 15.

Indeterminate form, 157.

Infinite, 20.

Infinite limits of integra-

tion, 287.

ordinates, 97.

Infinitesimal, 350.
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Integral, 209.

definite, 270.

double, 330.

multiple, 329.

of sum, 212.

triple, 328, 334.

Integration, 209.

by inspection, 211.

by parts, 216.

by rationalization, 248.

by substitution, 219.

formulas of, 211, 224.

of rational fractions,

238.

of total differential,

326.

successive, 321.

summation, 268.

Interior rectangles, 269.

Interval of convergence,

138.

Involute, 187.

of circle, 311.

Lagrange's form of re-

mainder, 152.

Lemniscate, area of,

334.

Length of arc, 306.

of evolute, 185.

of space curve, 318.

polar coordinates, 309.

rectangular coordi-

nates, 306.

Limit, 15.

change of, in definite

integral, 276.

Limits, infinite, for defi-

nite integral, 287.

Liquid pressure, 338.

Logarithm, derivative

of, 34.

Logarithmic curve, 280.

spiral, length of arc,

310.

Maclaurin's series, 141,

276.

Maximum, 53.

Mean value theorem, 74,

275.

Measure of curvature,

177.

Minimum, 53.

Moment of inertia, 346.

Multiple points, 193.

Natural logarithms, 36.

Normal, 85.

Notation for rates, 72.

Oblique asymptotes, 99.

Order of contact, 167.

of differentiation, 122.

of infinitesimal, 350.

Osculating circle, 172.

Osgood, 132.

Parabola, 108, 89, 171.

semi-cubical, 308.

Parabolic branches, 95.

Paraboloid, 314.

Parallel curves, 187.

Parameter, 201.

Partial derivative, 110.

Point of inflexion, 90.

Polar coordinates, 104.

subnormal, 106.

subtangent, 106.

Problem of differential

calculus, 21.

of integral calculus,

209.

Radius of curvature,

172.

Rates, 68.

Rational fractions, inte-

gration of, 238.

Rationalization, 248, 249.

Rectangles, exterior and
interior, 269.

Reduction, cases of im-

possibility of, 236.

formulas, 229, 262.

Remainder, 150.

Rolle's theorem, 150.

Simpson's rule, 294.

Singular point, 191.

Slope, 16.

Solid of revolution, 81.

Sphere, volume' by triple

integration, 336,.

Spheroid, oblate, 305, 314.

prolate, 314.

Spiral, of Archimedes,
107.

equiangular, 108
s

316,

310.

hyperbolic, 292.

logarithmic, 292.

Standard forms, 211, 224.

Stationary tangent, 90.

Steps in differentiation,

22.

Stirling, 141.

Subnormal, 86.

Subtangent, 86.

Summation, 268.

Surface of revolution, 81.

area of, 312.

Tacnode, 194.

Tangent, 85.

Tangent plane, 119.

Taylor, 141.

Taylor's series, 148.

Tests for convergence,
133.

Total curvature, 176.

differential, 112.

Tractrix, 315.

length of, 318.

surface of revolution

of, 318.

volume of revolution

of, 318.

Transcendental func-

tions, 34.

Trapezoidal rule, 292.

Trigonometric functions,

integration of, 255.

Variable, 15.

Volume of solid* of revo-

lution, 302.

Volumes by triple inte-

gration, 334.

Witch, area of, 286.

volume of revolution

of, 305.
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